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ABSTRACT
Previous studies of airborne surface waves have been carried out at audio-frequencies over

periodically rough surfaces formed by lighting lattices and bricks and at ultrasonic frequencies over
mm scale compound gratings involving grooves of the same depth but different widths. In this paper, a
modal model, which has been found to give comparable predictions to BEM while being much faster
to run is used, together with BEM, to investigate audio-frequency sound propagation over grooves
of varying widths and depths in the order of cm. Predictions of excess attenuation spectra, pressure
contours and zeroes in the effective reflection coefficient over grooves with multiple widths and depths
are used to indicate the nature of the surface waves which involve overlapping quarter wavelength
resonances. Predictions are extended to multiple depth grooved surfaces without and with porous
infills.

1. Introduction
Tolstoy [1] suggested a clear distinction between an evanescent surface mode and a true surface
wave. The former exists only due to the geometric and boundary conditions imposed at a surface
under excitation by an incident source and will not necessarily self sustain once the incident source
is removed. An example of this is the evanescent field at the edge of an optical element under total
internal reflection. A true surface wave, although excited initially by an incident disturbance, may
persist in the absence of an incident field due to resonant properties of the surface itself. This work
suggests the extent to which any periodic disturbance near to the surface† may be sustained, is a
function of the resonant behaviour of the surface, much akin to the resonant behaviour of tuned
circuits in electronics, so the distinction between a surface mode and surface wave is blurred and a
matter of degree.

In this paper we shall consider surface waves from a theoretical perspective using a modal model
for rectangular grooves. Much attention has been given to rectangular gratings due to the ease with
which they may be modelled, realised and their readiness to support surface waves.

2. A modal model for predicting the resonance contour of multiple grooved surfaces
A modal model was derived by Hessel et al. [2] to investigate blazing of simple rectangularly grooved
gratings in the electromagnetic domain and subsequently applied to acoustics with the purpose of
investigating surface waves by Kelders and Allard et al. [3, 4]. The authors recently extended the
method to predict acoustic point-to-point propagation [5] and then expanded the system of equations
to include multiple grooved structures of the form in Figure 1, with or without a porous layer at
the base of each groove [6]. The focus of our current research is to continue the work of Kelders
et al. using the modal model to predict surface wave (SW) behaviour, but with the application of
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constrained to the surface



Figure 1: Multiple grooved periodic surface with porous layers.

our extensions to the model to admit more complex structures. The advances in computing power
since the pioneering works also allow more involved simulations affording greater insight into the
underlying physical processes involved.

Given the vertical axis is z, infinite spatial periodicity in the horizontal x-axis and invariance in y
is assumed as is an exp(−iωt) time convention. A homogeneous plane wave is indcident upon the
surface of the grating with angle of incidence (AOI) θ and propagation constant k, propagating in the
x-z plane within an ideal inviscid medium. The modal model kernel is briefly described herein with
full derivations to be found in [2–6].

The resulting 2d problem may be considered as a domain of two separate half spaces, a free field
upper space for z > 0 and the lower groove space where z < 0. Continuity of pressure p and normal
particle velocity vz form the boundary conditions at the z = 0 surface. The acoustic field for the
upper and lower space reduce respectively to infinite sets of m and n discrete modes, with complex
amplitudes V̂m (upper space quantities are denoted by hat) and Vn. The V̂m and Vn sets are mutually
related by an inner product relationship where V̂0 = V̂ i

0+V̂ r
0 . The incident wave amplitude V̂ i

0 is given
as initial conditions of the problem along with the geometry of the grating. The modal impedances,
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relate p to vz for each free-space mode m, where Zc is the characteristic impedance of the medium
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and the x-axis projected propagation constant, k̂x
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The propagation geometry of each m is defined by θ and the grating pitch d and has the mode function
êm upon z = 0,
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Considering each groove to behave as an acoustically hard waveguide [7], the corresponding mode
function eq,n across the aperture of each groove becomes,
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where index q denotes the q’th groove within each period from q = 0 to q = K where K + 1 is the
number of grooves per grating period d.

Truncating the infinite m and n sets and equating them at z = 0 results in the following system of
equations, which may be solved numerically as a K (N ×N) matrix of the form A ∗ Vn = B,
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Ẑm⟨eq†,n†, ∗êm⟩⟨eq,n, êm⟩
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The modal impedance at the mouth of each groove, Zq,n, incorporating a porous layer element to the
bottom of each groove is given by,

Zq,n =
Zck

kq,n

(−1 + γ exp (ikq,n2hq))

1 + γ exp (ikq,n2hq)
, where γ = −1− (1/ZL(q, n))

1 + (1/ZL(q, n))
. (7)

Kelders et al. [3] realised that local minima in detA, relate to inherent resonances of the grating itself
in the zeroth-mode x-axis wave function k̂x

0 at a particular frequency. Taking,

∇ · (∇ detA) (8)

and sweeping as a function of frequency and k̂x
0 , provides a resonant response where local poles in

the response represent incidences of resonance which are properties of the grating structure itself.
This along with the propagation characteristics of each mode in the system, give useful insight into
the physical processes which may not be apparent using other numerical techniques such as FEM or
BEM.

3. Resonant characteristics of variable depth grooves
It has been shown [8, 9] that under certain conditions, surface wave characteristics or Excess-
Attenuation (EA) maxima/minima may be predicted by considering rudimentary phenomenon such as
1
4
-Wavelength (1

4
λ) resonance or phase gradient ∂ϕ

∂x
[10]. However, the system is complicated and not

fully explained by any one effect, hence the need for complex numerical models to provide generic
modelling. To explore the resonant characteristics of the rectangular grating a simple 2-grooved



structure with and without porous infill is considered initially. The depth of each groove has been
chosen such that the idealised (no end correction) 1

4
λ resonances lie at 1 kHz and 1.5 kHz respectively.

The remaining geometry of the problem has been chosen arbitrarily to show responses of interest in
the 1 kHz region as it is a significant nuisance band of road traffic noise [11]. Figure 2 shows the
EA spectra for such a surface as predicted by the point-to-point propagation modal model [6] both
with air-filled grooves and grooves fully filled with a porous medium (flow resistivity ≈ 869Pasm−2,
porosity 0.5), extending horizontally between the source and receiver with source and receiver heights
of 0.03m, separated by 2m.

Figure 2: EA spectra for a 2-groove grating with geometry d0 = d1 = 0.05m, a0 = a1 = 0.04m and
h0 = 0.086m, h1 = 0.057m.

For each groove, the markers represent theoretical 1
4
λ resonance frequencies and the horizontal line

bars indicate the frequency band with an end correction applied in the range 0.31aq to π
4
aq [12]. Their

location is consistent with the general expectation that at such frequencies the pressure field will tend
to cancel near to the surface due to the ≈ π phase shift introduced by traversing the groove causing
destructive interference with the incident mode.

Figure 3 shows the corresponding resonant contour plot of the 2-groove grating both with and
without a porous infill, plotted against sin θ, where θ is the angle-of-incidence of the zeroth m-mode,
which in the case of Figure 3 is imaginary and the entire domain of the plot represents evanescent
surface modes. For the air filled case, the predicted SW resonant peaks (indicated by local maxima)
agree in frequency with the EA response in Figure 2 at around 770Hz and 1040Hz. From both the
EA plot of Figure 2 and SW contour plot of Figure 3, it is evident that the addition of the porous layer
attenuates any resonances as would be expected by adding loss to the system. Comparing these results
with the time-independent pressure field BEM simulations of Figure 4, show consistency with the EA
and SW contour results obtained from the modal model. Significant field enhancement is observed
near to the surface at the predicted resonant frequenies of 770Hz and 1040Hz due to resonance of the



Figure 3: 2-groove SW resonant contour plot with a) Air filled grooves and b) Porous layer infill.

grating, induced by the incident mode. Strong attenuation occurs close to the surface around the 1
4
λ

resonance frequencies of 860Hz and 1200Hz.

Figure 4: BEM simulation of the pressure field over air filled 2-groove surface with source and receiver
heights of 0.03m separated by 2m (source @x = 0.5) at a) 770Hz (top), b) 860Hz, c) 1040Hz and d)
1200Hz (bottom).

4. Variable width grooves
Beadle et al. [13] studied a variable groove width geometry using both FEM and experimental
methods. We shall apply the modal method to the same geometry to compare the results while gaining



insight into the features of variable width grooves. Figure 5 shows the resulting resonant contour for
the first two Brillouin zones (BZ) in the fundamental projected x-axis wavenumber kx

0 normalised to
the effective wavenumber of the grating period kg.

Figure 5: Resonance plot for Beadle variable width grating where d0 = d2 = 0.006m, d1 = 0.007m,
a0 = a2 = 0.001m, a1 = 0.002m, h0 = h1 = h2 = 0.005m.

The hemispherical fundamental resonant response is due to interaction between adjacent grooves
which occurs in various phase/anti-phase combinations depending upon the geometry and resulting
degrees-of-freedom, whereas the flat resonant line at ≈ 14.25 kHz is related to the 1

4
λ frequency of

the groove depth h with a corresponding end correction.
The trio of grooves per period exhibit odd symmetry about kx

0/kg = 0.5 whereas the two groove
structure of the previous section would show even symmetry were it plotted in the same format.
As expected, symmetry is observed at the BZ boundary. Beadle et al. (their Figure 2) predicted
absorption minima at ≈ 13 kHz, ≈ 12.5 kHz and ≈ 11.25 kHz for plane wave angles of incidence of
0◦, 15◦ and 30◦ respectively. For qualitative comparison the kx

0/kg lines are plotted for the three AOI’s,
each of which intersect an area of resonance at each respective absorption frequency. This indicates
that incident energy is being re-directed away from the specularly reflected mode as confirmed by
the blazing clearly seen to coincide with each absorpton frequency in the modal energy distribution
plots of Figure 6. In this set of figures the three plots in the left column show the magnitude of
the diffraction modes in the range m = −2 to m = 1 with respect to each frequency for each
AOI, with the cut-off frequency relating to each mode plotted as a vertical dotted cursor if within
the plotted frequency bandwidth. The text boxes ”Min@..”, ”Coinc@..” and ”Max@..” show the
x-axis wavenumber kx, kx/kg and frequency values at the minimum magnitude of the specularly
reflected mode component of m = 0, at the maximum magnitude of a higher order diffraction mode
|m| > 0 and the properties of the maximally diffracted mode at the minima frequency of m = 0



respectively. In the right hand column are graphical representations of real and imaginary parts of the
wave functions of the incident and largest magnitude diffracted mode, at each blazing frequency, with
the grating structure shown in red, whose period is delimited by the black vertical cursors.

Figure 6: Modal magnitude distribution (left column) and projected phase (right column, R solid trace and I
dotted trace) of incident and reflected modes with an AOI of a) 0◦, b) 15◦and c) 30◦.

Due to the symmetry of the problem, at perpendicular incidence both m = −1 and m = 1 are
equally excited at the absorption frequencies measured by Beadle et al. , whereas at 15◦ and 30◦

energy is directed primarily into m = −1.
The close proximity of a minimum in m = 0 and a maximum in a higher order mode signifies

blazing, which manifests in the Figure 2 results of Beadle et al. as absorption minima. At each



absorption/blazing frequency, incident energy in the zeroth mode m = 0 is redistributed into a higher
order diffraction mode |m| > 0 in the next BZ with x-axis wavenumber kx

0 + kg.

5. Conclusions
The resonant properties of a multiple rectangular grooved grating may be extensively profiled using a
computationally efficient modal technique suggested by Kelders et al. The method has been expanded
to permit multiple grooved surfaces as well as a porous infill and the results have been shown
consistent with BEM and FEM methods but with faster solution times, as well as with experimental
data. Moreover the modal method affords useful insight into the physical processes involved.

6. References
[1] I. Tolstoy, Smoothed boundary conditions, coherent low-frequency scatter, and boundary modes,

J. Acoust. Soc. Am. 75 (1984) 1–22.

[2] A. Hessel, J. Schmoys and D.Y. Tseng, Bragg-angle blazing of diffraction gratings, Journal of
the optical society of America 65 (1975) 380–384.

[3] L. Kelders, J.F. Allard and W. Lauriks, Ultrasonic surface waves above rectangular-groove
gratings, J. Acoust. Soc. Am. 103 (1998) 2730–2733.

[4] J.F. Allard, L. Kelders and W. Lauriks, Ultrasonic surface waves above a doubly periodic grating.
J. Acoust. Soc. Am., 105 (1999) 2528–2531.

[5] S. Mellish, S. Taherzadeh and K. Attenborough, Approximate impedance models for point-to-
point sound propagation over acoustically-hard ground containing rectangular grooves, J. Acoust.
Soc. Am., 147 (2020) 74–84.

[6] S. Mellish, S. Taherzadeh and K. Attenborough, Use of a modal model in predicting propagation
from a point source over grooved ground, Q. Jl Mech. Appl. Math, Vol. 73. Issue. 4 (2021) 367–
382.

[7] D.T. Blackstock, Fundamentals of physical acoustics (Wiley-Interscience, New York, USA,
2000).

[8] I. Bashir, S. Taherzadeh and K. Attenborough, Diffraction-assisted rough ground effect: models
and data, J. Acoust. Soc. Am. 133 (2013) 1281–1292.

[9] D. Berry, S. Taherzadeh and K. Attenborough, Acoustic surface wave generation over rigid
cylinder arrays on a rigid plane, J. Acoust. Soc. Am. 146(4) (2019) 2137–2144.

[10] S. Larouche and D.R. Smith Reconciliation of generalized refraction with diffraction theory,
Optics Letters Vol. 37. No. 12 (2012) 2391–2393.

[11] K. Attenborough, S. Taherzadeh, T. Hill, I. Bashir, J. Forssen and M. Hornikx, The acoustical
performance of parallel wall systems, HOSANNA WP4 (2012) 1–69.

[12] A.D. Pierce, Acoustics: An Introduction to Its Physical Principles and Applications (Springer
International Publishing, New York, USA, 2019).

[13] J.G. Beadle, T. Starkey, J.A. Dockrey, J.R. Sambles and A.P. Hibbins The acoustic phase
resonances and surface waves supported by a compound rigid grating, Sci. Rep. 8:10701 (2018)
1–7.


