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ABSTRACT
Low-order network models, commonly used to assess the thermo-acoustic stability of combustors,
can be cast in a linear, time-continuous state-space representation. A standard linear eigenvalue
problem for the system modes results, which can be solved in a robust and efficient manner. To
represent the linear dynamics of any time-invariant flame in the state-space framework, this study
presents an approximation of the distributed-time-delayed flame response to acoustic velocity
perturbations based on a spatially discretized propagation equation (PE). We derive the rational
flame transfer function of a first-order-upwind-PE state-space model and discuss its relation to the
Tustin approximation of transfer functions. For an exemplary discrete finite impulse response of a
flame, a third-order-upwind-PE state-space model is shown to match the discrete flame frequency
response with an accuracy comparable to that of a rational approximation found by non-linear
optimization. The numerical dissipation introduced by discretization of the PE ensures negligible
gain above the Nyquist frequency of the underlying discrete flame impulse response. Finally, we
apply the PE state-space flame model to a generic Rijke tube and show that the predicted thermo-
acoustic modes agree well with results obtained from a classical non-linearly optimized rational
approximation of the frequency response function of the flame.

1. INTRODUCTION

Thermo-acoustic instability problems involve length scales ranging from acoustic wave lengths in
the order of the dimensions of the combustion device to flame thicknesses of a few millimeters [1].
To predict the stability of a combustor with reasonable computational effort, a common strategy is
to divide the problem into sub-models with tailored complexity. Flame transfer functions (FTF)
stemming from high-fidelity simulations can be incorporated into low-order acoustic networks [2].
Similarly, acoustic network models can be applied as boundary conditions in high-fidelity simulations
to reduce the size of the computational domain [3].
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Thermo-acoustic low-order networks usually lead to a non-linear eigenvalue problem for the
system dynamics, i.e. system modes and their corresponding frequencies and growth rates. This
non-linear eigenvalue problem is mainly a result of the phase shift experienced by acoustic waves
traveling through the geometry and the distributed-time-delayed reactions [4] of flames to acoustic
velocity perturbations, both leading to terms where the (complex-valued) frequency occurs in the
exponent of the exponential function. Furthermore, non-linearities can be introduced by non-trivial
boundary conditions, represented by complex-valued reflection coefficients, and acoustic inertia
in models of acoustically compact elements, e.g. for long holes in [5]. Solving this non-linear
eigenvalue problem by iterative root-finding [6] is computationally expensive. More crucial, the
choice of the initial conditions for the search algorithm [7] determines which modes are found, and
there is no guarantee that one finds all roots of the system. Contour integral methods, which ensure
that all eigenmodes within a contour in the complex-plane are found, offer a remedy [7]. However,
these methods remain computationally expensive [8].

Schuermans et al. [9] introduced the state-space approach to acoustic modeling, based on a modal
expansion technique and sub-model interconnection by the Redheffer Star Product. Emmert at al.
[10], on the other hand, connect sub-models with a feed-through equation. State-space formulations
for network elements are deduced from rational polynomials that represent the respective transfer
functions or from a spatial discretization of a propagation equation. If the state-space models of all
individual elements are linear, the resulting state-space model of the overall acoustic network is also
linear and a linear eigenvalue problem results, which can be solved in a robust and efficient manner.
This is an important advantage of state-space models over the standard formulation of network models
[8, 11].

The crucial point is the formulation of linear state-space models for network elements with
time-delays/phase shifts. For example, for a duct element, the characteristic amplitudes of acoustic
waves entering and leaving the duct can be set as the inputs and outputs of the state-space model,
respectively. Since the acoustic waves simply propagate through the duct, leading to a phase shift,
a linearized description of the system dynamics can be obtained by discretizing the propagation
equation (PE) in space [10].

The n-τ flame model shows great similarity to the aforementioned duct element if the time-delay is
interpreted as the time that the input to the model (acoustic velocity perturbation) needs to propagate
through a pseudo space until it affects the output of the model (heat release perturbation). The length
of the pseudo space and the propagation speed of the perturbation are matched to the desired time-
delay of the flame. In literature, states stemming from the discretization of the pseudo space are
referred to as "lagged states" [12] or "history states" [13]. The PE was used to realize the n-τ model
into state-space by Meindl et al. [11], and Mangesius and Polifke [13]. However, Schmid et al. [14]
point out that the n-τ model should only be used if the absolute time lag of the flame is known and
Subramanian et al. [12] advocate for distributed time-delay response functions to capture the rich
complexity of flame dynamics.

More sophisticated descriptions of flame dynamics can be obtained by (1) harmonic forcing
of the flame to identify the frequency response function (FRF) or (2) broad-band excitation
and a correlation analysis to identify the impulse response of the flame. However, an analytic
time-continuous description of frequency response function (FRF) or impulse response cannot be
obtained from these system identification (SI) techniques. The FRF will only be available at discrete
frequencies and the impulse response will consist of a truncated series of discrete impulses, also
known as finite impulse response (FIR). However, we require a time-continuous state-space (CSS)
model for stability analysis. The advantage of such a time-continuous model is the possibility of
coupling with a variable time step computational fluid dynamics (CFD) simulation, allowing an
efficient implementation of time domain impedance boundary conditions [3, 15]. Common strategies
to obtain CSS models from discrete FRF data are (1) fitting a rational function [12, 16–18], or (2)
first-order bilinear/Tustin and higher-order Padé approximation [9, 19] of exponential terms. For



either method, the obtained rational function is subsequently transformed into a CSS model, e.g. in
Jordan canonical form [20].

The contribution of the present study is to formulate a PE based CSS model for arbitrary FIRs.
Furthermore, an analytic analysis of the model is given and its performance is compared to the
rational-fitting strategy for an example FIR of a laminar premixed flame [21] obtained by SI [2].
In this study, the FIR is taken as input and details on its computation are out of the scope of the
presentation.

This paper is organized as follows: Section 2 reviews common low-order representations of flames,
i.e. FIR and FTF. Subsequently, Section 3 introduces the PE based CSS realization of flame transfer
functions. In Section 4, the performance of the presented PE CSS model is compared with a CSS
based on rational-fitting. Both CSS models are compared regarding the recovery of the discrete
frequency response of the flame, and the influence of the CSS realization strategy on the eigenvalues
of a generic Rijke tube is assessed. Finally, Section 5 concludes this study with a summary of the
findings.

2. LOW-ORDER FLAME MODELS IN THERMO-ACOUSTICS

This section reviews the concepts of flame impulse response and flame transfer function. We point out
the interrelation between frequency and time domain in both, the time-discrete and time-continuous
case. A graphical overview of the different domains can be found in [4], Figure 2.

The discrete response series rl of a causal linear system to any discrete signal series sl can be
obtained by convolution of the signal with the system’s FIR h = (h0, h1, ..., hN) of length N. For a
velocity sensitive flame, the input signal consists of the normalized velocity perturbation u′/ū at a
reference point and the response of interest is the normalized fluctuating heat release Q̇′/Q̇ of the
flame. For harmonic input signals sl = û/ūes∆tl, the discrete FTF Fd(s) that corresponds to the FIR h
becomes

rl =

N∑
k=0

hk
û
ū

es∆t(l−k) =
û
ū

es∆tl
N∑

k=0

hke−s∆tk ⇒ Fd(s) =
ˆ̇Q/Q̇
û/ū

=

N∑
k=0

hke−s∆tk, (1)

where s = σ + iω is the Laplace variable and ˆ(·) denotes the complex amplitude. From Eq. (1), it is
evident that the FTF can be interpreted as the sum of the distributed-time-delayed responses of the
flame to impulse forcing and is non-linear in s.

The discrete equivalent to the Laplace transform is the z-transform. By substituting z = es∆t in
Eq. (1), we find that the z-transform of the FIR equals the FTF. A rational approximation of F (s) can
be found by setting

z =
es ∆t

2

e−s ∆t
2

≈
1 + ∆t

2 s

1 − ∆t
2 s
, (2)

which is known as bilinear transform or Tustin transform [22]. The Tustin transform keeps the
mapping properties of the exponential function between Laplace and z-space and, therefore, conserves
stability properties of the time-discrete model when used to find a time-continuous description and
vice versa. Equation (2) shows that the Tustin transform, which is the first-order Padé approximation
[23], is based on the first-order Taylor series expansion ex ≈ 1 + x. Hence, accuracy can only be
expected for sufficiently small frequencies or small time increments ∆t. Rational approximations of
the time-delay term for higher frequencies were achieved in [9, 19] using Padé approximations of
higher orders.



3. CONTINUOUS STATE-SPACE REALIZATION BY PROPAGATION EQUATION

This sections presents a CSS realization based on a PE. We start with a minimal example and realize a
FIR consisting of three impulses in a first-order-upwind-PE CSS model. Subsequently, the equivalent
continuous flame transfer function is generalized for arbitrary FIRs. From this generalization, the
stability and mapping properties from z-space to Laplace space of the first-order-upwind-PE CSS
model are assessed.

3.1. Minimal Example
Let us assume a FIR consisting of three impulses, h = (h0, h1, h2), as shown in Figure 1. The FIR is
sampled with a constant time increment ∆t. Let the pseudo space in Θ be discretized with ∆Θ = ∆t/2.
The flame responds instantaneously with h0 to the velocity perturbation signal u′/ū, but the signal
has to travel the distance 2∆Θ = ∆t with unity propagation speed through the pseudo space until the
time-delay corresponding to h1 has passed. Similarly, the signal has to travel twice the distance until
the time-delay of h2 has passed. Introducing history states x = (x1, ..., x4)T , which store the signal
at different positions in pseudo space, the evolution of the state variables x is completely described
by a PE. Rearranging the PE for the time derivative of x and discretizing the spatial derivative with a
first-order upwind finite difference stencil yields

∂x
∂t

= −
∂x
∂θ
≈ −

[ xi − xi−1

∆θ

]
. (3)

Application of Eq. (3) to all states x gives
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1
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where A is the system matrix and B is the input matrix. We can formulate the output equation for
fluctuating heat release as

ˆ̇Q

Q̇
=

(
0 h1 0 h2

)︸            ︷︷            ︸
C


x1

x2

x3

x4

 + h0︸︷︷︸
D

û
ū
, (5)
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Pseudo space:

Figure 1: Minimal example: FIR consisting of three discrete impulses. Pseudo space is resolved with
∆θ = ∆t/2.



where C and D are the output and feed-through matrix, respectively. Equations (4) and (5) form a
continuous state-space model (A,B,C,D) with scalar input û/ū and scalar output ˆ̇Q/Q̇.

3.2. Analysis of the Resulting Flame Transfer Function
The system matrix A resulting from the first-order upwind discretization is triangular, allowing
straightforward determination of its eigenvalues that characterize the dynamics of the CSS model.
Note that the system matrix depends only on the discretization scheme and pseudo space resolution,
and not on the impulse response h. Furthermore, the coefficients of the system matrix are constant
and frequency independent.

Equations (4) and (5) can be Laplace transformed and rearranged to find the corresponding
continuous flame transfer function

F (s)∆Θ= ∆t
m

=
ˆ̇Q/Q̇
û/ū

= C(sI − A)−1B + D =

N∑
k=0

hk[
s∆t

m + 1
]km , (6)

where the parameter m controls the resolution of the pseudo space and N is the length of the FIR.
Equation (6) shows that the corresponding FTF is a rational function with only stable poles of
multiplicity mk at s = −m/∆t. Furthermore, for higher resolution of the pseudo space, the poles
move to a strongly damped region that is not of concern for the stability analysis of thermo-acoustic
systems.

Comparison with Eq. (1) shows that Eq. (6) is obtained from the exact FTF by substituting

z = es∆t = es ∆t
m m = (es ∆t

m )m ≈

[
s
∆t
m

+ 1
]m

⇒ z(iω) =

1 +

(
ω∆t
m

)2m/2

eiatan(ω∆t
m )m. (7)

Thus, the first-order-upwind-PE CSS model is, as the Tustin transform, based on a first-order Taylor
series expansion of the exponential function. However, compared to the Tustin transform, the
exponent is scaled by 1/m resulting in better performance at higher frequencies. For a fine resolution
of the pseudo space, Eq. (7) recovers the mapping properties of the z-transform. This is evident from
the complex pointer representation of the mapping. For high values of m, |z(iω)| → 1, so that the
imaginary axis is mapped on the unit circle.

4. COMPARISON OF PE AND DATA-FITTING BASED CSS MODELS

In this section, the performance of the PE CSS model is compared with a rational fit based CSS, where
the sixth-order rational fit was obtained with the MATLAB [24] tfest function, requiring a quality of
99 % and constraining the poles to be stable. For further information about the rational fit CSS model,
the reader is referred to [12, 16–18]. We assess (1) the mean square error (MSE) of the continuous
frequency response function to the original discrete model and (2) the influence of the CSS realization
strategy on the eigenvalues of a generic Rijke tube. The FIR for flame modeling consists of N = 44
discrete impulses and was obtained by SI from the simulation of a Kornilov flame [21]. It is indicated
in Figure 3 with blue dots.

4.1. Recovery of Discrete Flame Transfer Function
The difference between the FRF Fc of the CSS models and the original discrete FRF Fd is measured
by the mean square error (MSE) in the complex plane over all Nd frequencies of the discrete model,
i.e.

MSE =
1

Nd

Nd∑
k=1

∣∣∣Fd,k − Fc,k

∣∣∣2 . (8)



Figure 2: Left: Comparison between loci of discrete frequency response and continuous frequency
responses from different CSS realizations. Right: Loci of frequency responses of PE CSS models
based on resampled FIR.

The loci of the compared FRFs are shown in the left part of Figure 2. Note that the discrete model
is only plotted up to its Nyquist frequency f = 1/(2∆t) = 1250Hz. The performance of the Tustin
CSS model is good at low frequencies but severe deviations to the discrete model can be observed in
phase for higher frequencies (the locations of markers on the parametric curve do not coincide with
those of the discrete model). However, at high frequencies the gain of the FRF is low so that even big
discrepancies in phase become unimportant. This is reflected by the low error of MSE = 7.16e−4. Per
construction, the number of states of the Tustin model equals the number of time-delayed impulses
in the FIR. The rational fit CSS model, with only six states, shows a small error of MSE = 1.34e−5,
justifying its frequent use in literature. To achieve an error MSE = 1.09e−4, hence of the same order
as for the Tustin CSS model, with the first-order-upwind-PE CSS model introduced in Section 3, the
number of states increases drastically to 860. Remedy can be found by increasing the order of the
upwind stencil for the PE discretization from first-order to third-order. The third-order-upwind-PE
CSS model with 215 states shows an error of MSE = 1.51e−7, and a more accurate fit of the phase
than the first-order-upwind-PE model. However, the system matrix of the third-order-upwind-PE CSS
model is not triangular anymore, leading to a complex pole pattern of the corresponding rational FTF
(in contrast to Eq. (6)).

Inspection of Figure 2 (left) reveals that the PE CSS models show spurious gain above the Nyquist
frequency of the underlying discrete model. This is more significant for the third-order scheme and
becomes even more significant if the number of states of the third-order model is increased from
n = 215 to n = 430. In a frequency domain analysis, this spurious gain can be ignored since it
occurs above the frequency range of interest, i.e. above the Nyquist frequency. However, in a time
domain analysis that couples the CSS model to unsteady CFD [3, 15], this nonphysical behavior at
higher frequencies would be present. The discrete model is only valid up to its Nyquist frequency
of f ≈ 1250 Hz. For higher frequencies, the z-transformed FRF is symmetric in magnitude and anti-
symmetric in phase around this Nyquist frequency [4]. Hence, a continuous extrapolation based on
the discrete model is expected to show symmetric high frequency peaks in gain. The spurious gain is
damped only as a beneficial side effect of the numerical dissipation of the discretization scheme used
in the PE CSS model.

To overcome this problem, we resample the FIR at every history state to increase the Nyquist
frequency and push the (symmetric) spurious peak to higher frequencies where the numerical damping
is stronger. In Figure 3 (left), additional sampling points are inserted and the FIR is step-wise rescaled
to ensure a constant total impulse of the response. In Figure 3 (right), the original FIR was converted
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Figure 3: Comparison of different refinement strategies of the FIR: Scaling of the FIR (left) and
scaling with spline interpolation (right).
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Figure 4: MSE to discrete model for increasing number of state variables n for resampled and original
PE CSS models.

to a time series with a hold function, spline interpolated, and converted back to an impulse series
under consideration of the finer sampling time.

Figure 2 (right) shows that for both resampling strategies the spurious gain observed before
between 1250 Hz and 2500 Hz is suppressed. Inspection at frequencies up to twice of the new
Nyquist limit showed no further peak in gain. The mere scaling strategy recovers the phase of
the discrete model only at low frequencies. Figure 3 (left) shows that the scaling operation delays
the overall impulse response. Since the phase of the FRF is closely related to the time-delay of
the FIR, this effect becomes visible in the unmatched phase. In contrast, the phase accuracy of
the spline-interpolated third-order-upwind-PE CSS is excellent. Figure 4 compares the MSEs of
the resampled PE CSS models with the original PE CSS model, where the output matrix C was
zero patterned, see Eq. (5). For the same number of states n, the error for the spline interpolation
strategy is one order of magnitude higher than for the original zero patterning strategy in case of the
third-order-upwind-PE CSS model. The phase accuracy of the merely scaled CSS model is poor and
it is not guaranteed that the model’s accuracy improves with increased number of states.

4.2. Influence of the CSS Realization on the Eigenvalues of a Rijke Tube
So far, the PE CSS model was only assessed for zero growth rate by limiting the analysis to the
FRF. However, as pointed out by Schmid et al. [14], for linear stability analysis we have to solve
the eigenvalue problem in the complex plane. The PE CSS model is a linear approximation of the
time-delayed dynamics of the flame. Thus, the linear eigenvalue problem can only be expected to
give similar eigenvalues as the original non-linear problem if this approximation is sufficiently good
in the complex plane [8, 14].

Figure 5 shows magnitude and phase of the flame transfer functions F of the original distributed
time-delay model according to Eq. (1), the third-order-upwind-PE CSS model with spline-interpolated
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Figure 5: Magnitude and phase of the flame transfer functions F of the original distributed time-delay
model according to Eq. (1) (a, d), 3rd-order-upwind-PE CSS model with spline-interpolated FIR (b,
e) and 6th-order rational fit CSS model (c, f). The frequency response function (FRF) at zero growth
rate is indicated by a white line.

FIR and the sixth-order rational fit CSS model. Although the fit of the FRF by the rational fit model
was excellent, the FTF in the complex plane varies qualitatively from the FTF of the distributed
time-delay model for normalized growth rates σ/(2π) < −50 1/s. On the other hand, the FTF of the
third-order-upwind-PE CSS is qualitatively more similar to the FTF of the distributed time-delay
model.

To assess the linear approximation of the FTF obtained with the third-order-upwind-PE CSS
model, we compute the eigenvalues of a one-dimensional Rijke tube with quiescent flow as shown
in Figure 6 and compare them with the eigenvalues computed based on the rational fit CSS. Only
planar one-dimensional acoustic waves are non-evanescent and the waves travelling between network
elements are indicated with curved arrows in Figure 6. Both ends of the Rijke tube are open and
modeled with reflection coefficients Ru = Rd = −1. The flame is placed between an upstream duct
of length Lu = 0.25 m and a downstream duct of length Ld that is varied from 0.75 m to 2.0 m in a
parameter study. The speed of sound in the upstream duct is c = 341 m/s. The flame dynamics are
modeled by the FIR shown in Figure 3 and standard acoustic Rankine-Hugoniot jump conditions [25,
26] with a temperature jump Td/Tu = 4.96 and constant isentropic exponent γ = 1.4. The complete
CSS model of the Rijke tube was obtained with the open source software taX4 [10].

Figure 7 (left) shows the pole map of the Rijke tube obtained with the third-order-upwind-PE CSS
model with spline interpolated FIR. The length of the downstream duct varies from 0.75 m (black

4https://gitlab.lrz.de/tfd/tax
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Figure 6: Low-order acoustic network model of a Rijke tube.

markers) to 2 m (gray markers). Also indicated are the poles and zeros of the flame model in red.
The blue squares indicate the eigenvalues of the original non-linear problem with Ld = 0.75 m, i.e.
exponential expressions for the phase shifts due to acoustic wave propagation in the ducts and the
time-delayed behavior of the flame, as obtained with an iterative solver assuming the CSS eigenvalue
spectra as initial condition. Figure 7 (right) shows the same information for a Rijke tube, where the
flame was modeled with the rational fit CSS. In contrast to the rational fit based CSS model of the
flame, the PE-based CSS model of the flame has no pole in the investigated region of the complex
plane since upwind discretization of the PE guaranties stability and highly damped poles.

For normalized growth rates σ/(2π) > −50 1/s, the predicted trajectories of the poles of
the Rijke tube for both models agree well. According to Figure 5, this is the region of
the complex plane where the FTFs of the third-oder-upwind-PE CSS and rational fit CSS
agree well with the FTF of the original time-delayed flame model. In contrast, in the region
−80 1/s < σ/(2π) < −50 1/s, 0 Hz < ω/(2π) < 500 Hz, where the FTFs of the third-order-upwind-
PE CSS and rational fit CSS differ significantly, the PE-based Rijke tube model predicts three
additional poles. These additional poles are located close to zeros of the FTF and two of them
depend only weakly on the length of the downstream duct. Since these poles do not converge
towards a solution of the non-linear Rijke tube model, they are most likely a consequence of the PE
discretization and of spurious nature.

Looking at the modes close to the stability borderσ = 0, it seems possible that a less accurate flame
model can lead to wrongly predicted instability. It is emphasized that the CSS model must capture

(a) Third-oder-upwind-PE CSS flame model. (b) Sixth-order rational fit CSS flame model.

Figure 7: Poles of the Rijke tube are shown for a variation of the downstream duct length from
Ld = 0.75 (black) to Ld = 2.0 (gray). Also shown in red are the poles and zeros of the applied
flame model. Blue squares indicate poles confirmed by iterative solution of the non-linear model for
Ld = 0.75.



the phase of the flame response sufficiently well, since thermo-acoustic instabilities are sensitive to
the timing between acoustic pressure and heat release fluctuations (Rayleigh criterion) [27]. This
underlines that a third-order discretization of the PE is preferable despite its more complicated pole
pattern than a first-order PE CSS model.

5. SUMMARY, CONCLUSION AND OUTLOOK

A continuous state-space (CSS) realization of discrete flame impulse responses allows to formulate
thermoacoustic stability analysis as a linear eigenvalue problem. The present paper closes the gap
between state-space realizations of the simplistic n-τ flame model based on a propagation equation
(PE) [11, 13] and more realistic flame models based on rational-fitting [12, 16–18].

The distributed-time-delayed response of flames to velocity perturbations was linearly
approximated by discretizing a propagation equation (PE) in pseudo space. We showed that
PE-based CSS models lead to rational flame transfer functions, too, and presented an explicit
analytical expression for the flame transfer function of the first-order-upwind-PE CSS. Comparison
of numerical results demonstrated very good performance of the rational-fitting approach, as it leads
to state-spaces models that are two orders of magnitude smaller than PE-based realizations with
comparable accuracy. On the downside, the rational fits must be constrained to poles in the negative
real half-plane for stability reasons and an increase in the degrees of freedom of the rational function
does not guarantee a better fit but can lead to over-fitting of the data. Hence, for parametric studies
that require repeated evaluation of CSS models of flame dynamics, the upwind-PE approach is
preferable, since it guarantees stability of the state-space model of the flame. Furthermore, the quality
of the model is guaranteed to increase with state-space size. It is preferable to discretize the PE with
a third-order upwind stencil in order to achieve an accuracy that is comparable to rational-fitting
based CSS. For a generic Rijke tube, spurious modes where found close to the zeros of the PE CSS
model of the flame. This phenomenon should be kept in mind when analyzing eigenvalue spectra
obtained by PE-based CSS models and needs further investigation.

In addition to the PE and rational-fitting strategy, control theory knows many techniques to realize
a state-space model from the discrete impulse response (Markov parameters) of a system. The central
tool in these strategies is a singular value decomposition of the Hankel matrix [22]. In the present
study, these techniques were not further investigated since they lead to a time-discrete state-space
model. However, for acoustic networks based on time-discrete state-space models, these methods can
prove useful and should be considered. For an application in the context of acoustics see Pelling and
Sarradj [28]. A direct comparison with the PE CSS model presented here can be the scope of further
work.
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