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ABSTRACT 

The boundary element method in 2.5D allows for the usage of moving sources by a modification in 

the wave number frequency domain. The 2.5D boundary element method uses a Fourier 

transformation about time and the axis of movement of the object. The boundary element method is 

applied to the cross section. To use the method it has to be assumed that the cross section is constant 

along the direction of movement. An advantage of the method is that reflections in the sound path 

caused by the ground are taken into account. The inverse form of the method is used for the detection 

of noise sources on railway trains. Recordings made with a 64-channel microphone array at the high-

speed railway line near Vienna will be investigated by this method. A big disadvantage is the fact 

that only eight positions along the track and eight positions in the cross section were measured. This 

leads to the fact that the wave number can only be estimated in as rough manner and that the IBEM 

has much more unknowns than measured position exist. The second point needs for a regularization. 

An advantage of the method is that the vibration at the surface is determined.  

 

1.    INTRODUCTION 

A wide range of beamforming methods usually does localization of noise sources. Here, a 

combination of the acoustic holography and the inverse boundary element method (IBEM) shall be 

used. The presented approach allows incorporating moving sources and reflections from the 

boundaries.  

A limitation of the approach is the assumption that the geometry does not change in the direction 

of the movement. Trains fulfill this assumption to a large extend. Especially passenger trains have an 

almost constant surface. But, the boogies and the wheels cannot be included in this model. 

Two models are presented in this paper. The first is the usage of Fourier transformation in the 

direction of the movement and a 2.5D BEM method for the cross section. The second approach is the 

Fourier transformation in the direction of the movement and for the height and a projection to the 

source plane using the acoustic holography. This second approach does not incorporate reflections 

from the surface. Also evanescent waves are neglected, because the distance to the source in high. 

The surface of the train is about 6 m away from the microphone array in measurements recorded at 

Tullnerfeld in Austria. The speed of the Austrian Railjet reached up to 230 km/h. The German ICE 

up to 320 km/h. 
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2.    MOVING LOAD 

A moving load can be described in the original time space domain by 

     j tf x, t A x vt e      . (1) 

A is the complex amplitude of the moving load, v is the velocity, x the coordinate along the 

movement,  the angular frequency and t the time. The Dirac Delta distribution is ( ) and the 

imaginary unit is j.  

The Fourier Integral transformation allows deriving the effect of a moving load in the wavenumber 

frequency domain 
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(2) 

The circular number is . In the wavenumber frequency domain the frequency  is shifted using 

the wavenumber kx  

 xk v
  . 

(3) 

3.    2D BOUNDARY ELEMENT METHOD (BEM) 

The Greens function of the 2D boundary element method (BEM) is derived from the Helmholtz 

equation in 2D 

    2 2k G x y       , (4) 
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(5) 

The horizontal coordinate perpendicular to the movement is y and the vertical coordinate is z. f is 

the frequency and c the speed of sound.  

The Greens function contents the Hankel function of the second type  
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4.    2.5D BOUNDARY ELEMENT METHOD (BEM) 

The 2.5 D Boundary element method is simply derived from the 3D case, if the longitudinal 

coordinate x is transformed applying Fourier integral transformation [1] 
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The wavenumber becomes imaginary, if the wavenumber kx is larger than the wavenumber k. 

The Green’s function is still the Hankel function with a real or imaginary argument 
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5.    2.5D BOUNDARY ELEMENT METHOD WITH A MOVING LOAD 

The moving load leads to a shift of the angular frequency (Equation 3), 
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The Greens function remains the same (Equation 8). 

 

6.    INVERSE BOUNDARY ELEMENT METHOD IN 2.5D WITH A MOVING LOAD 

6.1.    Inverse Boundary Element Method 

The inverse BEM tries to calculate the pressure distribution on the boundary of a radiating body using 

microphone measurements in the space. Of course there are much more radiating elements at the 

surface than there are microphones available. These leads to two effects [2, 3]:  

• To reduce the complexity of the calculation the reciprocity theorem is used. The sources are 

placed at the microphone positions and the pressures at the boundary of the body are calculated. 

The velocities at the surface are derived from the surface pressures. Symbols are missed. 

• An underdetermined problem arises that needs a regularization, because additionally the problem 

is ill-posed. In the current problem, a Tikhonov regularization will be used. 

 

6.2.    Tikhonov Regularization 

The first step is a SVD of the rectangular matrix. The regularization number is . This number has to 

be chosen 
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Figure 1: L-Curve for the selection of . 

 

The selection is done using the L-Curve (Figure 1). The curve consists of a decaying part, followed 

by a horizontal one. It is assumed that the horizontal part consists of noise. Therefore, a  is chosen 

that belongs to the transition part of the curve. 
 

6.3.    Filon Method and FFT 

For the proposed application to 2.5D with a moving load a Fourier integral transformation in time 

and space about the x coordinate is needed. 

For the application, a rectangular array is useful, because a Fourier transformation for the x-

coordinate for every z coordinate is needed. 

In the application, a Fast Fourier Transformation in time is applied. Additionally, a Hanning 

window is chosen. The length of the time window is chosen with respect to the length of the window 

in space in a manner that the moving source can move from one end of the window to the other. 

In space, a Filon method is used. This allows to use an arbitrary grid in the wavenumber domain. 

The used microphone array consists of 8 x 8 Microphones. Therefore, only 8 points exists for the 

Fourier integral transformation. In the wavenumber domain, 80 points are calculated. With this trick, 

the width of the window is extended from 80 cm to 8 m. 

The next step of the procedure is the inverse BEM method in 2.5D. Only 8 source positions are 

available for this step. 

Now, the resampling about the frequency is needed using the inverse of Equation 3 

 xk v   . (11) 

The last step is the inverse Filon method for the velocities at the boundaries of the object related 

to the x-coordinate. 

 

7.    ACOUSTIC HOLOGRAPHY 

In an intermediate step, the inverse BEM is substituted by the acoustic holography. The following 

steps are processed: 

• Filon method is additionally applied to the vertical direction z. Again, 80 wavenumbers kz are 

interpolated to extend the window size to 8 m. 

• A projection to the front surface of the body with distance y0 is done using Equation 12.  
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• An inverse Filon method is applied about the wavenumber kz.  
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(12) 

 

7.1.    First Results 

For the Acoustic holography, first results were processed assuming a train pass-by (Railjet) with 

100 km/h. 

In a first step a frame of the pass-by was calculated suing FFT and linear interpolation instead of 

a Filon method. 

 
Figure 2: Magnitudes of the pressure at the front surface of the train using FFT 

 

Presented are in Figure 2 and Figure 3 the magnitudes for a band pass from 500 Hz to 2000 Hz.  

It can be seen that at z = 3 m the highest values occur. This is about the depth of wheel and rail. A 

wrap around effect of the FFT is also visible. 

A second example is processed using the Filon method 

 

 
Figure 3: Magnitudes of the pressure at the front surface of the train using Filon method. 

 

The wrap around effect does not occur, but the maximum values occur at x=0 or z =0. 

 

8.    CONCLUSIONS 

A big advantage of the inverse boundary element method is the ability to take reflections at a surface 

into account. This is not possible in the beamforming method and the acoustic holography. However, 

until now only the beam forming method produced usable results, if a trick is used. With the 

beamforming method, only points are focused that are on the line of the microphone array, because 



 

 

at this position the Doppler shift is zero. However, the gradient of the frequency has its maximum at 

this point. 
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