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ABSTRACT 

 

Absorbing sound almost completely at specific frequencies with conventional acoustic materials 

whose thickness is much smaller than the wavelength is a challenge, particularly at low fre-

quencies. For this purpose, acoustic metamaterials are of great interest. The metamaterial stud-

ied in this research is called multi-pancake cavities. It is composed of a main pore with a repe-

tition of thin annular cavities (pancake cavities). Previous research has shown that this repeti-

tion increases the effective compressibility of the main pore. This increase makes it possible to 

decrease the effective sound speed in the material and, consequently, the main pore resonance 

frequencies. At these resonances, the metamaterial presents absorption peaks, the first one can 

have a wavelength to material thickness ratio of more than dozens of times (subwavelength 

material). To complete the analysis and prediction of absorption peaks (especially secondary 

peaks) of these metamaterials, this study proposes to adapt a conventional mass-spring model 

to this metamaterial. Due to the small cavity length-to-diameter ratios, radial propagation is 

considered inside the annular cavities. This model shows a good agreement with results ob-

tained by finite element method and impedance tube measurements. Finally, comparisons with 

previous theoretical approaches are presented and discussed. 

 

 

1 INTRODUCTION 

 

Acoustic metamaterials are of great interest to handle low frequency problems. Among them, perfo-

rated material with dead-end periodic structure presents several absorption peaks for wavelength 

higher than their thickness [1]–[6]. Leclaire et al. [1] have studied a metamaterial composed of a main 

pore with periodically spaced side branch resonators. They have shown that the periodic structure is 

responsible for decreasing the material effective compressibility. This decrease leads to a diminution 
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of the effective celerity and consequently a diminution of the material resonance frequencies. To 

optimize the acoustic effect, Dupont et al. [4] have replaced side branch resonators by thin annular 

cavities, called pancake cavities, as shown in Figure 1 (a-b). The very small thickness (compared to 

the diameter) of the cavity imposes that radial propagation dominates inside [7]. Transfer matrix 

method (TMM) [4], [8] has been previously used to characterize theoretically such metamaterial. 

Also to describe this metamaterial more precisely a hybrid model (numerical-TMM)  has been devel-

oped by Kone et al. [6]. Brooke et al. [9] have proposed a model for the effective properties, density 

and bulk modulus, in linear and nonlinear (high sound pressure level) regimes.  

 

Here, we proposed a simplified model in order to better understand the acoustic behaviour of the 

metamaterial and to estimate the resonance frequencies by solving an eigenvalue problem. This model 

is based on a mass-spring analogy. Mass-spring analogy has already been used to model metamate-

rials [9]–[11]. Viscous and thermal losses are taken into account in the model by considering effective 

fluid in the main pore and in the pancake cavity with effective fluid method (Johnson-Champoux-

Allard model [12]). Necks (pores between two pancake cavities) are identified by masses and the 

pancake cavities by springs. The radial propagation in the annular pancake cavity imposes that the 

stiffness (springs) depends on Hankel functions and thus on the frequency.  

 

2 MATERIAL AND MODEL 

2.1 Material  

 

The studied metamaterial is shown in Figure 1 [4]. It is composed of a repetition of identical neck 

and thin annular air cavity. The neck thickness is ℎ𝑛 = 1 mm and its radius is 𝑟𝑛 = 2 mm. The cavity 

thickness is ℎ𝑐 = 1 mm and its radius is 𝑟𝑐 = 21 mm. The sample radius is 𝑅𝑠𝑎𝑚𝑝𝑙𝑒 = 22.22 mm and 

the number of periodic unit cell (PUC) is 𝑁 = 15.  

 

 

(a) 

 

 

(b) 

 

 

(c) 

 
Figure 1 : The metamaterial sample, (a) full, (b) half geometry and (c) a schema of a periodic unit 

cell (PUC). 

 

2.2 Mass-spring model 

 

Due to the periodic arrangement of the cell, a PUC is first studied. The PUC is composed of a neck 

backed by a pancake cavity. The cavity is here decomposed in two parts, the first one is an annular 

dead-end volume (for 𝑟 ∈ [𝑟𝑛 ; 𝑟𝑐]) and the second one is the junction (for 𝑟 ∈ [0 ; 𝑟𝑛 ]) as shown in 

Figure 1 (c).  



 
 

For the proposed equivalent mass-spring model, each neck is identified by an equivalent mass and 

each cavity by an equivalent stiffness. The walls are motionless and perfectly reflective to sound. The 

thermal and viscous losses are considered by effective fluid media for the necks and the annular 

pancake cavities. Mass and stiffness are then made complex. The Johnson-Champoux-Allard (JCA) 

parameters are given in TABLE I with necks identified as circular cross-section pores and the annular 

pancake cavities as slits. The equivalent mass is equal to 

 

𝑀 = 𝜌𝑛𝐴𝑛ℎ𝑛, (1) 

 where 𝜌𝑛 is the neck effective density and 𝐴𝑛 = 𝜋𝑟𝑛
2 the neck cross-section area. 

 

Now by looking at the stiffness, because the cavities are thin, only radial propagation is considered 

inside the cavity. This implies that the stiffness depends on the frequencies and Hankel functions. 

The acoustic surface impedance, 𝑍𝑆,𝑑𝑒, at the interface between the annular dead-end volume and the 

junction is [7] 

 

 
𝑍𝑆,𝑑𝑒 = 𝑗𝑍𝑑𝑒

𝐻0
ሺ1ሻሺ𝑘𝑑𝑒𝑟𝑛ሻ − 𝐻1

ሺ1ሻሺ𝑘𝑑𝑒𝑟𝑐ሻ 𝐻1
ሺ2ሻሺ𝑘𝑑𝑒𝑟𝑐ሻ𝐻0

ሺ2ሻሺ𝑘𝑑𝑒𝑟𝑛ሻൗ

𝐻1
ሺ1ሻሺ𝑘𝑑𝑒𝑟𝑛ሻ − 𝐻1
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ሺ2ሻሺ𝑘𝑑𝑒𝑟𝑐ሻ𝐻1

ሺ2ሻሺ𝑘𝑑𝑒𝑟𝑛ሻൗ
, 

(2) 

where 𝑗2 = −1,  𝑍𝑑𝑒 and 𝑘𝑑𝑒 are respectively the effective characteristic impedance and the effective 

wave number of the annular dead-end pancake cavity given by JCA model [12] for  a slit. 𝐻𝑖
ሺ𝑚ሻ

 is the 

Hankel function of 𝑖th order and 𝑚th kind defined as  𝐻𝑖
ሺ1ሻ

ሺ𝑥ሻ = 𝐽𝑖ሺ𝑥ሻ + 𝑗𝑌𝑖ሺ𝑥ሻ and 𝐻𝑖
ሺ2ሻ

ሺ𝑥ሻ =
𝐽𝑖ሺ𝑥ሻ − 𝑗𝑌𝑖ሺ𝑥ሻ, with 𝐽𝑖 and 𝑌𝑖 are Bessel functions of first and second kinds and of 𝑖th order. 
 
Equation 25 in reference [7] gives the impedance of the pancake cavity at its entrance 

 

𝑍𝑆,𝑐 =
1

𝑗
𝑘0ℎ𝑐

𝑍0
+

2ℎ𝑐

𝑍𝑆,𝑑𝑒𝑟𝑛

, 
(3) 

where 𝑍0 and 𝑘0 are the air characteristic impedance and wave number, respectively. 

 

 

TABLE I : Effective Johnson-Champoux-Allard parameters of pores and pancake cavities. 𝜂 is the 

dynamic viscosity of air ሺ𝑁. 𝑠/𝑚2ሻ. 

 Open poros-

ity 𝝓 ሺ𝟏ሻ 

Tortuosity 

𝜶∞ ሺ𝟏ሻ 

Viscous 

length 𝚲 ሺ𝒎ሻ 

Thermal 

length 𝚲′ ሺ𝒎ሻ 

Static airflow 

resistivity  

𝝈 ሺ𝑷𝒂. 𝒔/𝒎𝟐ሻ 

Neck (circular 

cross-section 

pore)  

1 1 𝑟𝑛 𝑟𝑛 8
𝜂

𝜙𝑟𝑝
2
 

Pancake cav-

ity (slit) 

1 1 ℎ𝑐 ℎ𝑐 12
𝜂

𝜙ℎ𝑐
2
 



 
For a one degree of freedom (PUC rigidly backed), combining Hooke’s law and Equation 3, the 

stiffness can be expressed as    

 

𝐾 =
𝐹𝑠𝑝𝑟𝑖𝑛𝑔

𝑥
= 𝑗𝜔

𝑃𝐴𝑛

𝑣
= 𝑗𝜔𝐴𝑛𝑍𝑆,𝑐, 

(4) 

 

where 𝐹𝑠𝑝𝑟𝑖𝑛𝑔 is the spring force, 𝑥 is the mass displacement, 𝜔 the angular frequency, 𝑃 the acous-

tic pressure at the junction and 𝑣 the mass velocity ( 𝑣 = 𝑥ሶ = 𝑗𝜔𝑥 assuming harmonic time depend-

ence of the form 𝑒𝑥𝑝ሺ𝑗𝜔𝑡ሻ). 

 

According to Newton's second law and assuming time harmonic dependence, the equation of motion 

for the studied metamaterial with 𝑁 repetitions is  
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(5) 

 
where 𝐗 is the mass displacement vector 𝐗 = {𝑥1 𝑥2 … 𝑥𝑛}𝑡, the subscript 𝑡 refers to the transpose vec-

tor. The first term is the diagonal mass matrix, and the second one is the tridiagonal stiffness matrix. 𝑃1 is the 

total pressure applied on the first mass. The first neck thickness is corrected (sample radiation) and equal to 

ℎ𝑛
′ = ℎ𝑛 + 0.48√𝐴𝑛ሺ1 − 1.25 𝐴𝑛/𝐴𝑐ሻ [13].  

 

Equation 5 can be solved to determine the surface impedance of the metamaterial 𝑍𝑠,𝑀𝑆 =
𝑃1 ሺ𝑗𝜔Τ 𝑥1ሻ. Finally, the normal incidence sound absorption coefficient of the rigidly backed met-

amaterial sample is 

𝛼𝑀𝑆 = 1 − ቤ
𝑍𝑠,𝑀𝑆 𝜙𝑠𝑎𝑚𝑝𝑙𝑒Τ − 𝑍0

𝑍𝑠,𝑀𝑆 𝜙𝑠𝑎𝑚𝑝𝑙𝑒Τ + 𝑍0
ቤ

2

. 
(6) 

 

with 𝜙𝑠𝑎𝑚𝑝𝑙𝑒 =  𝐴𝑛 𝐴𝑠𝑎𝑚𝑝𝑙𝑒Τ , where 𝐴𝑠𝑎𝑚𝑝𝑙𝑒 = 𝜋𝑅𝑠𝑎𝑚𝑝𝑙𝑒
2  is the sample surface. 

 

3 Results 

 

The normal incidence sound absorption predicted by the present mass-spring model is shown in Fig-

ure 2 (a) for the metamaterial described in section 2.1. The results are compared to those obtained by 

the TMM approach presented by Kone et al. [8]. To verify both theoretical results, a virtual tube 

measurement with plane wave at normal incidence on the whole geometry is realized using the Finite 

Element Method (FEM), on COMSOL Multiphysics, similar as Dupont et al. [4]. COMSOL Mul-

tiphysics is used to solve Helmholtz equation with rigid boundary conditions. The thermo-viscous 

losses are taken into account by assigning effective properties to the air saturating the cavities and 

necks according to the JCA model and the underlying parameters which are given in TABLE I. As it 

was observed in reference [4], the different models show several absorption peaks. The mass-spring 

model and TMM results are almost identical but differs significantly from those of FEM. The differ-

ence between the models is the neck modeling. The TMM considers one dimensional acoustic wave 



 
propagation, while in the Mass-Spring model a mass behaviour is assumed (constant velocity in the 

neck). This assumption is still correct because of the thinness of the neck. FEM results predict a first 

absorption peak nearly equal to one at 357 Hz. Both the TMM and mass-spring model also predict a 

first absorption peak nearly equal to one, however this time it occurs at 453 Hz (relative error on peak 

frequency of 27% compared to FEM).  

 

The shift between theoretical models and FEM can be explained because end correction is only added 

to the first neck (sample radiation in the impedance pipe). However, neck radiation in the pancake 

cavity should also be considered, which implies additional end correction. Due to the high ratio of 

length-to-diameter of the cavity, classical formulae [11 12] are not appropriate and predict a correc-

tion greater than the cavity thickness. Here, we propose to take the minimum between the classical 

end correction [13] (0.48√𝐴𝑛ሺ1 − 1.25 𝐴𝑛/𝐴𝑐ሻ and the half thickness of the cavity. For the sample 

in this study, the cavity thickness is very thin (pancake cavity), therefore the chosen correction is the 

half thickness of the cavity. This correction has been applied on both theoretical models. With this 

new correction, the predicted theoretical sound absorptions are closer to the FEM result – see Figure 

2 (b). The theoretical absorption coefficient is 0.97 at 340 Hz (relative error on peak frequency of 

4.8% compared to FEM). This comparison shows that the mass-spring model with the proposed end 

correction describes well the different absorption peaks which are associated with the metamaterial 

acoustic resonances.  

 

Also, a stopband effect is present around 2 600 Hz [4] and the absorption becomes null. The mass-

spring model allows showing that the number of absorption peaks is equal to the number of degrees 

of freedom and consequently of PUC. Due to high PUC number, the first five peaks are distinct. For 

the higher ones, they overlap just before the stopband.  

 

One advantage of the mass-spring model compared to the TMM is to estimate the first resonance 

frequency by solving eigenvalue homogeneous case of Equation 5. Using lossless approximation and 

low frequency approximation of Hankel functions, the first estimated resonance frequency is equal 

to 362 Hz. Corresponding to a relative error on the peak frequency of 6% compared to the frequency 

of the first absorption peak obtained by Equation 6 without approximation. 

  
Figure 2 : Normal sound incidence absorption of the multi-pancakes obtained by the Finite Element 

Method (FEM), the Transfer Matrix Method (TMM) and the proposed Mass-Spring (MS) model. 

(a) Analytical models without end correction, and (b) with the proposed end correction. 

 

(a) (b) 



 
4 CONCLUSIONS 

 

A mass-spring model has been developed to describe an acoustic metamaterial composed of periodic 

array of necks and thin cavities. The model with the neck end correction shows good agreement with 

finite element method and almost identical results with transfer matrix method. The model has al-

lowed to show that the number of periodic unit cell (i.e., number of degree-of-freedom) determines 

the number of absorption peaks before the stopband. By using low frequency approximation and 

lossless case, the model gives a good estimation for the first resonance frequency of the material.  
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