CO$_2$ capture with the phase-change absorbent of a mixed AFIL and alcohol solution

Wufeng Jiang, Xiaoshan Li, Xuan Yang, Cong Luo, Liqi Zhang*

State Key Laboratory of Coal Combustion, Huazhong University of Science and Technology, Wuhan 430074, China

Abstract

The environmental problems caused by excessive emissions of carbon dioxide are increasingly serious, so carbon capture and utilization is extremely urgent. Phase-change absorbents have attracted much attention because of their unique phase-change characteristics, which can greatly reduce the energy consumption of regeneration. In the present work, we adopted an efficient absorbent of amino-functional ionic liquids (AFILs) as a main absorbent to absorb CO$_2$ by dissolved separately in ethanol and 1-propanol. The absorption of CO$_2$ was carried out at certain mass ratios of tetramethylammonium glycinate ([N$_{1111}$][Gly]) to alcohols (1:0, 1:0.5, 1:1, 1:2, 1:3, 1:4), temperature (303K) and CO$_2$ pressure (0.1MPa). Precipitation could be found after CO$_2$ was absorbed by mixed absorbents and was easy to be separated (Figure 1). The CO$_2$ absorption capacity of [N$_{1111}$][Gly]-ethanol absorbent was about 0.85mol CO$_2$/mol IL at the mass ratio of 1:2 while that of [N$_{1111}$][Gly]-1-propanol absorbent was about 0.98mol CO$_2$/mol IL at the mass ratio of 1:4 (Table 1). The reaction and phase change mechanisms of [N$_{1111}$][Gly]-alcohols absorbent for CO$_2$ capture were clarified based on the FTIR and 13C NMR analysis results. During the absorption, CO$_2$ reacted with [N$_{1111}$][Gly] to form carbamate and carbamate could react with alcohol to form carbonate, which resulted in higher CO$_2$ absorption capacity. Besides, the products gradually precipitated in the lower layer since their limited solubility and larger density.

Keywords: Phase-change absorbent; amino-functional ionic liquids; alcohol; carbon dioxide; capture.

Table 1 The CO$_2$ absorption capacity of [N$_{1111}$][Gly]-alcohols absorbent at different mass ratios (mol CO$_2$/mol IL).

<table>
<thead>
<tr>
<th>Absorbent</th>
<th>1:0</th>
<th>1:0.5</th>
<th>1:1</th>
<th>1:2</th>
<th>1:3</th>
<th>1:4</th>
</tr>
</thead>
<tbody>
<tr>
<td>[N$_{1111}$][Gly]-ethanol</td>
<td>0.41</td>
<td>0.51</td>
<td>0.78</td>
<td>0.85</td>
<td>0.82</td>
<td>0.74</td>
</tr>
<tr>
<td>[N$_{1111}$][Gly]-1-propanol</td>
<td>0.41</td>
<td>0.82</td>
<td>0.81</td>
<td>0.90</td>
<td>0.75</td>
<td>0.98</td>
</tr>
</tbody>
</table>

References

* Corresponding author. Tel.: +86 027 87542417-8316.
E-mail address: lqzhang@mail.hust.edu.cn