Mass transfer in semi-aqueous MEA for CO₂ Capture

Ye Yuan

Advisor: Gary Rochelle

THE UNIVERSITY OF TEXAS AT AUSTIN McKetta Department of Chemical Engineering

Introduction:

- CO₂ diffuse and react with amine
- MEA_{(semi-aq):} MEA-physical solvent-water
- Theory
- Experiment Method
 - WWC, FTIR, N₂O analogy
- Results
- Conclusion

Mass transfer with fast and finite rate reaction

Mass balance: CO₂ reacts with amine

 $CO_2 + 2 MEA \stackrel{K_{eq}}{\longleftrightarrow} MEACOO^- + MEAH^+$

$$\frac{dc_i}{dt} = -Di \frac{d^2c_i}{dx^2} + V_i * R$$

$$R = k_3 * a_{CO2} * a_{MEA}^2 - \frac{k_3}{K_{eq}} a_{MEACOO} * a_{MEAH}$$

$$a_i = \gamma_i * C_i$$

- $i = CO_2$, MEA, MEACOO⁻, MEAH⁺
- Can't solve analytically
- Can be solved with assumptions (PFO)

Solve k_g' by film theory and PFO (Danckwarts, 1970)

- [amine] >> [CO₂], constant
- Pseudo First Order (PFO)

$$D_{co2} \frac{\partial^2 [CO_2]}{\partial x^2} - k[Am]^2 [CO_2] = 0$$

$$N_{CO2} = \frac{\sqrt{D_{CO2}k} * [Am]}{H_{CO2-solution}} (P_{CO2,i} - P^*_{CO2,b})$$

$$k_g' = \frac{\sqrt{D_{CO2}k_3} * [Am]}{\gamma_{CO2}H_{CO2}}$$

activity based

$$k_{g}' = \frac{\sqrt{D_{CO2} k_3} * a_{am}}{\gamma_{CO2}^{0.5} H_{CO2}}$$

Semi-aqueous amine, Why higher k_g'?

Amine-water-physical solvent

$$k_{g}' = \frac{\sqrt{D_{CO2} k_3} * a_{am}}{\gamma_{CO2}^{0.5} H_{CO2}}$$

Hypothesis

- γ_{CO2} reduced, k_g' increase
- a_{am} increase, k_g ' increase
- Viscosity increase, D_{CO2} decrease, k_g ' decrease

Experiment method

• k_g ' & P_{CO2}^* by the WWC • γ_{CO2} , by N₂O analogy • $a_{\rm am}$, by FTIR

Wetted Wall Column (WWC)

Measuring CO₂ physical solubility using N₂O analogy (Versteeg 1988)

 H_{CO2} is the Henry's constant (std.)

Activity of amine

•
$$P_{am} = H_{am}\gamma_{am}x_{am} = H_{am}a_{am}$$

• $a_{am} = P_{am}/H_{am}$

- H_{am} is the Henry's constant (std.)
- γ_{am} is the activity coefficient
- a_{am} is the activity of the amine.

$$\bullet \ \frac{P_{am,2}}{P_{am,1}} = \ \frac{a_{am,2}}{a_{am,1}}$$

CO₂ solubility with different NMP/water ratios at 40 °C

11

k_a' of 7 m MEA in different solvents at 40 °C by WWC

P_{MEA} above different 7 m semi-aqueous MEA at 40 °C by FTIR

Numerical solution of penetration theory by MATLAB

$$CO_{2} + 2 MEA \stackrel{K_{eq}}{\longrightarrow} MEACOO^{-} + MEAH^{+}$$

$$\frac{dc_{i}}{dt} = -Di \frac{d^{2}c_{i}}{dx^{2}} + V_{i} * R$$

$$R = k_{3} * a_{CO2} * a_{MEA}^{2} - \frac{k_{3}}{k_{eq}} a_{MEACOO} * a_{MEAH}$$

$$a_{i} = \gamma_{i} * C_{i}$$
1.3
$$k_{3} = 12711 \frac{m^{6}}{mol^{2} * s}$$

$$D_{co2} = D_{co2,aq} \left(\frac{\mu}{\mu_{aq}}\right)^{-0.52}$$
0.9
$$0.7$$
0.5
$$0 = 20 \quad 40 \quad 60 \quad 80 \quad 100$$
NMP wt %

MEA concentration profile by MATLAB

PFO approximation is adequate

MEA concentration profile by MATLAB

Rich loading, more NMP: PFO is not accurate

Explain the rate increase by PFO

Lean:0.37 mol CO₂/mol MEA

 $k_g' = \frac{\sqrt{D_{CO2} k_3} * a_{am}}{\gamma_{CO2}^{0.5} H_{CO2}}$

 $D_{CO2} \propto \mu^{-0.52}$

Solvent mass ratio		μ, 40 °C	<i>Үсо</i> 2	γ_{MEA}	k _g ', exp	k _g ', predict
NMP	water					$a_{MEA} * \mu^{-0.26} * \gamma_{CO2}^{-0.5}$
0	1	1	1	1	1	1.0
1	3	1.84	0.95	1.60	1.2	1.4
3	1	6.08	0.58	2.67	2.1	2.2
95	5	5.76	0.28	4.44	5.2	5.3

Rich loading: not PFO, must use the MATLAB model

Conclusion

- At lean loading (P*_{CO2} at 40 °C = 100 Pa), k_g' of 7 m MEA in 3 water/1 NMP, 1 water/3 NMP, and 5 water/95 NMP is 1.25 times, 4 times, and 17 times that of 7 m MEA(aq), respectively.
- Adding NMP increases k_g': lower loading, higher physical solubility, higher MEA activity.
- A MATLAB mass transfer model was built for semi-aqueous MEA.
- PFO approximation is adequate to represent the CO₂ mass transfer in aqueous MEA but not accurate for semi-aqueous MEA.

Thanks

Comments & Questions?

