Reboiler Vapor Recompression for Ammonia-based CO₂ Capture

Hoan Nguyen Le Quoc, David Shan Hill Wong Department of Chemical Engineering National Tsing Hua University

6th September, 2017 4th Post Combustion Capture Conference

Introduction

Background

- The contribution of increasing atmospheric concentration of carbon dioxide (CO₂) to climate change has led to great public concern.
- Post-combustion CO₂ capture (PCC) using chemical solvents is considered to be ready-for-deployment mitigation technology.

2017 PCCC4

Amine vs Aqueous Ammonia

	Amine	Aqueous Ammonia
Cost and property	The major drawbacks of usingamineareexpensive,oxidationandthermaldegradation of solvent.	The advantages of aqueous ammonia solvent are cheap and well-known solvent toxicology.
The actual solvent regeneration energy is achieved at the pilot/ full-scale capture plant	2.5-2.6 GJ/ton CO ₂ with MEA solvent that is reported by Boundary Dam Power Station.	4–4.2 GJ/ ton CO_2 at CSIRO's PCC pilot trials (Yu et al. 2011).
The best simulation result with advanced heat recovery	1.67 GJ/ ton CO ₂ (Higgins and Liu 2015).	2.46 GJ/ ton CO ₂ (Li et al. 2015).

H. Yu et al. (2011) "Results from trialing aqueous NH_3 based post-combustion capture in a pilot plant at Munmorah Power Station: absorption"

K. K. Li et al. (2015) "Technical and Energy Performance of an Advanced, Aqueous Ammonia-Based CO₂ Capture Technology for a 500 MW Coal-Fired Power Station"

S. J. Higgins and Y. A. Liu (2015) "CO₂ Capture Modelling, Energy Savings, and Heat Pump Integration"

2017 PCCC4

Multi-pressure Stripping

- In order to reduce the energy consumption, various process improvements and energy-saving schemes have been proposed.
- Multiple pressure stripper and lean vapor recompression modifications show high potential savings on reboiler duty when applied to amine process.

Figure 2: Lean Vapor Recompression Approach (Cousins et al. 2011)

B. A. Oyenekan and G. T. Rochelle (2006). "Energy Performance of Stripper Configurations for CO₂ Capture by Aqueous Amines."

A. Cousins, L. T. Wardhaugh and P. H. M. Feron (2011). "Preliminary analysis of process flow sheet modifications for energy efficient CO₂ capture from flue gases using chemical absorption."

國 立 清 華 大 學 化 學 工 程 學 系 National Tsing Hua University Department of Chemical Engineering

2017 PCCC4

Research Objective

How much energy consumption will be reduced using lean vapor recompression or multiple pressure stripper when applied to the aqueous ammonia based-CO₂ capture process?

2017 PCCC4

Design Methods

Process considered and Key Design Variables

Key design variables
1. NH₃ concentration
2. Lean CO₂ loading
3. Stripper pressure
4. Flash pressure
5. Reboiler duty

2017 PCCC4

General settings: Feed, Absorbers, Stripper, et

This process is simulated by using Aspen Plus v.8.4. \succ

Operating conditions			Parameters	Simulation
Flue gas temperature (K)	298		Model	Rate-based
Lean solvent inlet	298 C	CO ₂ Absorber	Packing material	Mellapak-250Y
temperature (K)	stage 1		Diameter (m)	12
Lean solvent inlet loading	0.225	00080 -	Packing height (m)	15
Flue gas composition y_{CO2}	0.12		Model	Rate-based
Lean flow rate (tons/h)	4930 CO ₂ Absorber 767 Column– stage 2		Packing material	Mellapak-250Y
Flue gas flow rate (tons/h)			Diameter (m)	12
		Stuge 2	Packing height (m)	5
		CO ₂ Stripper	Model	Equilibrium
CO ₂ removal 90%		Column	Pressure (bar)	10
		Compressor	Polytropic and Mechanical efficiency	80%
國立清華大學化學工程學 National Tsing Hua University	2017 PCCC4		2017/9	

Simulation Method

- The electrolyte non-random two-liquid (ELECNRTL) thermodynamic method is applied to the NH₃-CO₂-H₂O system.
- **Rate-based model is employed to simulate two absorber columns:**
 - The calculations of mass transfer and interfacial area were determined by Hanley and Chen 2012 correlation.
 - Chilton and Colburn 1934 and Stichlmair et al. 1989 correlations are adopted for the calculation of heat transfer and liquid holdup, respectively.
- Stripper column is simulated by using equilibrium stages.

2017 PCCC4

Performance index

 $W_t = W_{compr} + W_{equiv}$

National Tsing Hua University

國 立 清 華 大 學 化 學 工 程 學 系

Department of Chemical Engineering

PURE CO₂

W₊: total work consumptiom (MWh/ton CO₂)

2017 PCCC4

11

Steps of minimizing the total work consumption

- 1. Guess NH₃ concentration.
- 2. Guess CO₂ loading of lean in and then adjust flowrate of lean solvent to get 90% CO₂ capture rate.
- 3. Guess stripper pressure.
- 4. Guess flash pressure.
- 5. Adjust Reboiler duty to satisfy CO₂ loading and flowrate of lean out equal to those of lean in.
- 6. Back to step 4 and repeat steps 4 to 5 until the total work consumption is minimal.
- 7. Back to step 3 and repeat steps 3 to 5 until the total work consumption is minimal.
- 8. Back to step 2 and repeat steps 2 to 5 until the total work consumption is minimal.
- 9. Back to step 1 and repeat steps 1 to 5 until the total work consumption is minimal.

2017 PCCC4

Results

Choosing flash pressure can eliminate the reboiler completely

Effect of flash pressure on reboiler duty with fixed NH_3 concentration of 6.8 wt%, lean loading of 0.225 mol CO_2 /mol NH_3 and stripper pressure of 10 bar.

2017 PCCC4

2017 PCCC4

Optimal stripper and flash pressures at fixed lean loading and ammonia concentration

When the stripper pressure is above 10.5 bar, the energy from reboiler needs to be supplied.

國 立 清 華 大 學 化 學 工 程 學 系 National Tsing Hua University Department of Chemical Engineering

2017 PCCC4

Larger lean CO₂ loading cannot achieve 90% removal

Effect of lean CO₂ loading on CO₂ removal and total work with fixed NH₃ concentration of 6.8 wt% and optimum stripper pressure.

2017 PCCC4

Total work can be reduced by a lower NH₃ concentration and higher lean loading

The minimum total work of this process is 0.0866 MWh/ton CO_2 at lean CO_2 loading of 0.275 mol CO_2 /mol NH₃ and NH₃ concentration of 5 wt%.

2017 PCCC4

New process without reboiler is proposed

2017 PCCC4

Summary

National Tsing Hua University

Department of Chemical Engineering

- Using aqueous ammonia solvent, this study can get 43.77% energy reduction comparing with the best result that is proposed by Li et al. 2015.
 - In addition, compare with MEA solvent, the enery consumption in this study is very close to the best simulation result of Higgins and Liu 2015.

Li Kang Kang et al. (2015) "Technical and Energy Performance of an Advanced, Aqueous Ammonia-Based CO_2 Capture Technology for a 500 MW Coal-Fired Power Station"

S. J. Higgins and Y. A. Liu (2015) "CO₂ Capture Modelling, Energy Savings, and Heat Pump Integration" 國立清華大學化學工程學系

2017 PCCC4

Outlook

- \succ Since low pressure steam do not have to be extracted from the power cycle, interaction between capture plant and the power plant can be decoupled.
- Utilization of off-peak electricity can be simply achieved by using an electric \succ energy storage (EES) device without having to change the throughput rate of the capture plant. (see for example, Lin et al. 2012)

Lin, Y. J., Wong, D. S. H., Jang, S. S., & Ou, J. J. (2012) "Control strategies for flexible operation of power plant with CO₂ capture plant". AIChE Journal.

國 立 清 華 大 學 化 學 工 程 學 系 National Tsing Hua University Department of Chemical Engineering

2017 PCCC4

1. Recharge at off-peak time of power station.

2. Some types of this device:

- Electrochemical storage system (Batteries)

- Electrical Storage systems: double-layer

capacitors (DLC) or superconducting magnetic energy storage (SMES)

Thanks for your attention

2017 PCCC4