Solvent selection and design for CO₂ capture

How we might have been missing the point

4th Post Combustion Capture Conference September 2017, Birmingham, Alabama

Patrick Brandl, Maria T. Mota-Martinez, Jason P. Hallett and Niall Mac Dowell

R&D scientist: "We've developed a new solvent!"

Properties	30wt% MEA*	New solvent
Equilibrium constant	0.015 kPa	1/3*MEA= 0.005 kPa
Viscosity	2.51mPa·s	3*MEA = 7.53mPa⋅s
All other properties	= new solvent	= 30wt% MEA

Is the newly developed solvent better than the standard (MEA)?

*MEA= Monoethanolamine
$$HO^{NH_2}$$

Solvent selection and design for CO₂ capture How we might have been missing the point

Motivation: Gap between lab and field

- Develops new CO₂ capture material
- Uses intuition to predict implications

Process Engineer

- Wants to reduce CO₂ footprint at best cost
- Needs to select
 process and solvent

PCCC4 – 4A Amines

Motivation: Focus on energy

Research Chemist

- Develops new CO₂ capture material
- Uses intuition to predict implications

- Thousands of new materials having been proposed
- Focused on developing solvents with either increased CO₂ capacity and/or reduced heat of regeneration
- Cost \$/MWh or \$/ton_{CO₂} is composed of CAPEX^{*} and OPEX^{*}
- Focusing on CO₂ capacity and heat of regeneration excludes the contribution of transport and kinetic properties which determine equipment size and thus capital cost
- Reducing the energy demand (GJ/ton_{CO₂}) of the capture process does not necessarily reduce the overall cost (\$/ton_{CO₂})
- → Essential to move beyond equilibrium-based metrics of solvent performance

Screening model closes gap between lab and field

Research Chemist

- Develops new CO₂ capture material
- Uses intuition to predict implications

Rapid screening

- Bridges gap between lab and application
- Analyses process cost implications

Process Engineer

- Wants to reduce CO₂ footprint at best cost
- Needs to select
 process and solvent

Screening model closes gap between lab and field

Rapid screening

- Bridges gap between lab and application
- Analyses process cost implications

- It typically takes several decades for a technology to move "out of the lab"
- Screening approach will allow technologies to "fail quickly", thus avoiding years of costly experimentation and enables process engineers to quickly identify most promising technology
- Solvent screening uses both monetised and non-monetised performance indicators
- Challenges:
 - Identifying the minimum set of thermophysical and kinetic parameters which must be reported for evaluation
 - Dealing with uncertainty (incomplete data sets)

Screening model

PCCC4 – 4A Amines

*KPIs= Key Performance Indicators

TRL^{*} of carbon capture technologies

Application	Absorption		Cryogenics		Solid Looping		Solid sorbents		Membranes	
Application	Physical	Chemical	Air separation	CO ₂ anti- sublimation	Chemical	Calcium	Adsorption	Low T gas/solid	Polymeric	Others
Post- combustion										
Pre-combustion										
Oxy-combustion										
Industrial										

Approach: Rigorous process model for solvents

PFD* solvent-based CO₂ capture unit

Bespoke thermodynamic unit modelling

- Absorber
- Reboiler
- Heat exchanger

- Stripper
- Condenser
- Pumps, Blower, Mixer

Implemented in PSE's gPROMS®

PCCC4 – 4A Amines

Interaction of model with solvent data and properties

Solvent data

Minimum required properties

- Equil. CO₂
- Viscosity

- Density
- Reaction constants

- Viscosity Heat capacity
- Thermal conductivity
- Surface tension

Process and economics model

PCCC4 – 4A Amines

Details of thermodynamic model
laminar

$$Nu_t = 1.86 \left(Re_t Pr_t\right)^{\frac{1}{3}} \left(\frac{d_{in}}{L_{tube}}\right)^{\frac{1}{3}} \left(\frac{\mu}{\mu_w}\right)^{0.14}$$

 $k_L^0 \left(\frac{\rho_t^L}{\mu_L g}\right)^{1/3} = 0.0051 \frac{Re_L^{\prime 2/3} (a_p d_p)^{0.4}}{Sc_L^{0.5}}$ $Nu_t = 1.86 \left(Re_t Pr_t\right)^{\frac{1}{3}} \left(\frac{d_{in}}{L_{tube}}\right)^{\frac{1}{3}} \left(\frac{\mu}{\mu_w}\right)^{0.14}$
 $A_t = \frac{(p_t - d_0)D_s l_B}{p_t}$
 $d_e = \frac{1.10}{d_0} (p_t^2 - 0.917d_0^2)$
Wilke-Chang equation: $D_{i,j}^0 = 7.4 \ 10^{-8} \frac{(\phi M_i)^{1/2}T}{\eta_i V_i^{0.6}}$
Perkins and Geankoplis equation $D_i \mu^{0.8} = \sum_{j=1}^r x_j D_{i,j}^0 \mu^{0.8}$
 $\frac{1}{2} \sum_{j=1}^r (p_j - q_j) p_j^{0.14}$
 $\frac{1}{2} \sum_{j=1}^r (p_j - q_j) p_j^{0.14}$

PCCC4 – 4A Amines

Trade-off: Flexibility and speed are main priorities

Imperial College London Economic indices

Capital Expenditure (CAPEX)

Correlations based on key characteristics of each unit.¹

- E.g.: Heat exchangers \rightarrow Area, material
- Annualised cost using the Capital Recovery Factor (CRF)

$$CRF = \frac{i(1+i)^n}{(1+i)^n - 1}$$
 i = interest rate (10%)
n = years (25 years)

Operating Expenditure (OPEX)

- Energy requirements (MW) ≠
 Electricity (MW) + Heat (MW)
- Short-Run Marginal Cost (SRMC) for the production of electricity and for the production of heat

$$\frac{\$^{SRMC}}{\text{MWh}} = \frac{\$^{\text{MWh}}_{\text{fuel}}}{\eta_{\text{plant}}} + \left(\frac{\$}{\text{ton}_{\text{CO}_2}} \cdot CI^{\text{ton}_{\text{CO}_2}}_{\text{MWh}}\right) + \$^{\text{CO}_2}_{\text{T\&S}}$$

Total Annualised Cost (TAC)

• TAC = $CRF \cdot \sum_{k}^{\text{units}} CAPEX_k + \sum_{l} OPEX_l$

"Total cost of ownership"

Sensitivity analysis: Impact of properties on process

Key Operating Parameter (KOP)

- Flue gas: $900\frac{\text{kg}}{\text{s}}$, 12mol-% CO₂ 725MW_g supercritical pulverized coal fired power plant
- Capture rate: 90% CO₂ emitted by power plant captured
- Lean loading= $0.31 \frac{\text{mol}_{\text{CO}_2}}{\text{mol}_{\text{binder}}}$
- Absorber: 40°C, 1.1bar

Sensitivity study

- Single property of solvent is varied while others are fixed, *e.g.*, solvent's viscosity is increased and density, heat capacity, *etc.* stay constant
- Properties depend on temperature
- Fixed KOP
- → Effect on process performance
- → Effect on costs (CAPEX, OPEX, TAC)

PCCC4 – 4A Amines

Imperial College London

Results: Effect of changing viscosity on costs

٠

Increasing viscosity

- hinders mass transfer of gas into liquid
 - \rightarrow Longer contact times required
 - → Taller columns
 - lowers Reynolds number
 - \rightarrow Reduces heat transfer in exchangers
 - \rightarrow Transition from turbulent to laminar flow
 - \rightarrow Steps in costs (lean solvent cooler and main heat exchanger)

Results: Impact on height of absorber

Sensitivity study identifies limits

- If a new solvent has a high viscosity, it needs to offset the negative impact by reducing the required solvent flowrate. →trade-offs
- World's tallest distillation column $\approx 120m$

*Benchmark= 30wt% MEA

Results: Relative impact of changing properties on TAC

Equilibrium constant Density TAC relative to benchmark 1.4 Viscosity Heat Capacity Benchmark 1.3 1.2 1.1 Increased capture cost 1.0 Decreased capture cost 0.9 0.8 0.4 0.6 0.8 1.0 1.2 1.6 1.8 2.0 4 **Property relative to benchmark**

Imperial College London

Results: Two-dimensional impact on TAC

R&D scientist: "We've developed a new solvent!"

Properties	30wt% MEA*	New solvent
Equilibrium constant	0.015 kPa	1/3*MEA= 0.005 kPa
Viscosity	2.51mPa⋅s	3*MEA = 7.53mPa⋅s
All other properties	= new solvent	= 30wt% MEA

Imperial College PCCC4 – 4A Amines London Is the new solvent better than the standard (MEA)? TAC (\$·ton⁻¹_{CO2})

Effect of increasing viscosity outweighs beneficial increase of CO_2 uptake (decreasing equilibrium constant) on Total Annualised Costs (TAC)

 \rightarrow MEA is better solvent

Diffusivity (D_i)

Results: Molar flux J_{CO_2} across the vapour-liquid interface

A lower soluble solvent () might present improved molar flux if its diffusivity is favoured over the more soluble solvent ().

Reaction constant (k_2)

Henry's constant (H)

PCCC4 – 4A Amines

Imperial College London

Summary

Conclusions: Holistic approach needed

- Historically focused on enhancing the CO₂ absorption and reducing the heat of reaction, neglecting the effect of the other properties on the process cost
- Properties that have a primary importance on the TAC of CO₂ capture are:
 - 1. Viscosity
 - 2. Equilibrium loading of CO₂
 - 3. Reaction kinetics
 - 4. Heat capacity
 - 5. Heat of absorption
 - 6. Density
 - 7. Surface tension

mportanc

Contact

Patrick Brandl

Research Assistant

Centre for Process Systems Engineering Centre for Environmental Policy Imperial College London South Kensington Campus <u>14 Princes Gardens</u>, London, SW7 1NA

Email: <u>patrick.brandl16@imperial.ac.uk</u> Twitter: @patrick_brandl PCCC4 – 4A Amines

Disclaimer: The Excel and gPROMS logo are used without approval by their respective copyright holders. All images are used for illustrative and academic/ non-commercial purposes only. Other media are licensed under the Creative Commons Zero (CC0).