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• Benchmarking «novel» capture technologies requires a reference

➢ Typically MEA in literature due to large data in open literature 

• Inconsistent evaluations from case to case in literature

➢Process configuration

➢Design basis

➢Assumptions for economic evaluation

• Consistent and transparent study over a large range of industrial applications

➢Benchmark for MEA absorption studies

➢ Fast performance estimation of specific cases

➢Based on previous experiences with MEA benchmarking in projects : ReCAP, CEMCAP

Be careful to use 
literature results

Motivation of this study
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Process flowsheet

• Direct contact cooler not considered

➢Cooling requirement and transport to DCC 

very case dependent

➢ Feed gas assumed to be saturated after DCC

• Additional equipment than commonly 

considered in literature are included

➢ Inventory tanks, thermal reclaimer, filters, 

etc.

• CO2 conditioning excluded
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Case matrix

• 45 cases considered based on 

combinations of: 

➢ 5 flue gas mass flow rate (313-

3,696 t/h)

➢ 9 CO2 concentration (3.5-30%CO2)

• For each case 

➢ Simulation, design, and equipment 

list

➢ Full cost evaluation



Capture rate [%] 90

Feed composition (dry basis) N2-CO2 binary mixture

Temperature of flue gas feed [oC] 35

Absorber pressure [bara] 1.1

Stripper pressure [bara] 1.8

Maximum column diameter [m] 12

Minimum temperature difference for heat exchange [oC] 10

Lean loading 0.18

MEA mass fraction in lean solvent 0.3

Design basis & assumptions
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Process modelling results – Specific Reboiler Duty

• SRD varies between 3.7 and 4.08 

MJ/kgCO2 depending on the 

molar concentration

• Values consistent with recent CO2

capture studies



Process modelling results – Column design and sizing



Cost evaluation methodology

Total direct cost

(TDC)

Process & project 

contingency

Total Plant Cost

(TPC)

Indirect cost

Owner cost

Total Capital 

Requirement
(TCR)

Total equipment cost

(TEC)

Installation

Interest over construction

Sparing

Start-up cost

• KPI

CO2 avoidance cost =
Annualised TCR + Annual OPEX
Annual CO2 emissions avoided

• Investment costs 

➢ Equipment characteristics based on simulation and design 

margins and limitations

➢ Equipment and direct cost assessed with Aspen Process 

Economic Analyzer

➢ Cost escalation to TCR based on well established and transparent 

approaches from CEMCAP & IEAGHG

• Operating costs 

➢ Equipment characteristics based on simulation and 

design margins and limitations

➢ Fixed: Maintenance, insurance, labour

➢Variable: Steam, power, MEA, process and cooling 

waters

❑ Base case: Steam from natural gas boiler

➢ Cost: 25.6 €/MWthh

➢ Climate impact: 0.21 tCO2/MWthh
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• With smaller scale and decreasing 
concentration of CO2 in flue gas, the 
capture cost increases rapidly

• Economies of scale become more 
pronounced at flue gas CO2

concentrations below 7.5%

• The effect of scale becomes less 
pronounced at CO2 concentrations 
above 20%

Impact of scale and flue gas CO2 concentration



• Breakdown of CO2 avoidance cost 
exemplified for a constant flue gas mass 
flow with varying CO2 concentration
➢ Cost of steam and other variable costs 

become more dominant at higher CO2

concentrations while CAPEX share 
decreases

Breakdown of CO2 avoidance cost
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Breakdown of CAPEX

• Breakdown of CAPEX exemplified for a 
constant flue gas mass flow with varying CO2

concentration

• The absorber is the largest single equipment 
in terms of CAPEX
➢ The absorber share of CAPEX decreases with 

increasing CO2 concentration in the flue gas 
➢ Absorber size is similar between cases while 

the amount of CO2 avoided increases with 
CO2 concentration



Cost
Climate 
impact

Cost compared 
to reference

Climate impact 
compared to 

reference

Steam supply scenario €/MWthh tCO2/MWthh - -

Natural gas boiler - reference 25,6 0,21 1,0 1,0

Steam extraction from an LP Turbine 13,3 0,18 0,5 0,9

Coal CHP plant 22,0 0,46 0,9 2,2

Steam produced from waste heat from process 6,8 0 0,3 0,0

Electric boiler - EU 64,4 0,31 2,5 1,5

Electric boiler - Norway 33,3 0,01 1,3 0,1

Steam supply scenarios
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Constant flue gas mass 
flow of 2004 tonne/h

Impact of steam supply

• The source of steam and its climate impact, together with the direct cost of steam has a strong 
impact on the CO2 avoidance cost

• The choice of steam supply strategy is highly site-specific, e.g. availability of waste heat/steam in 
upstream process or nearby industry, local/regional el grid characteristics etc.
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• Performances evaluation of MEA absorption over a large range of industrial applications 

(composition and size)

➢Consistent and transparent study

➢Based on previous project experiences

➢Detailed evaluation of each case considered

➢Aim to be used as basis for fast performances estimation of MEA benchmark in future studies

Conclusions and future work

• Observed trends

➢ Column size limitations can have significant impact on the plant design and limit scale benefits

➢ Cost in €/t decreases as CO2 concentration and size increase

➢ Absorber and desorber represents around 50% of the CAPEX

➢ Steam consumption is often the main cost contributor

➢ Steam production method is key and impacts the CO2 avoidance cost in two ways: steam cost and climate impact



• Further work

➢Perform additional cases evaluation in relevant "areas"

❑ Smaller volumes for high-purity sources

❑ Larger volumes for low-purity sources

➢ More precise evaluation on water balances

➢ Document and make results widely available

Conclusions and future work
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