NORWEGIAN CCS RESEARCH CENTRE

Energy and cost performances baseline of MEA-based CO₂ Capture

Chao Fu^a, Simon Roussanaly^a, Stefania Gardarsdottir^a, Rahul Anantharaman^{a,*}

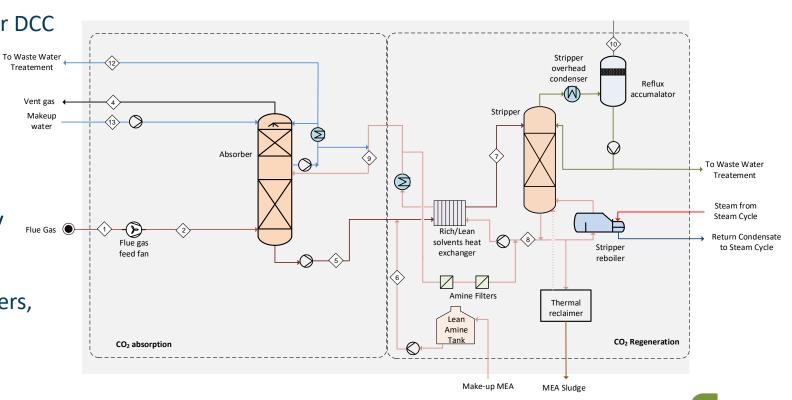
^aSINTEF Energy Research * <u>Rahul.Anantharaman@sintef.no</u>

Outline

- Motivation for this study
- System boundaries and case matrix
- Process modelling
- Economic evaluation
- Conclusion and further work

Motivation of this study

- Benchmarking «novel» capture technologies requires a reference
 - > Typically MEA in literature due to large data in open literature
- Inconsistent evaluations from case to case in literature
 - Process configuration
 - Design basis
 - Assumptions for economic evaluation
- Consistent and transparent study over a large range of industrial applications
 - Benchmark for MEA absorption studies
 - Fast performance estimation of specific cases
 - > Based on previous experiences with MEA benchmarking in projects : ReCAP, CEMCAP



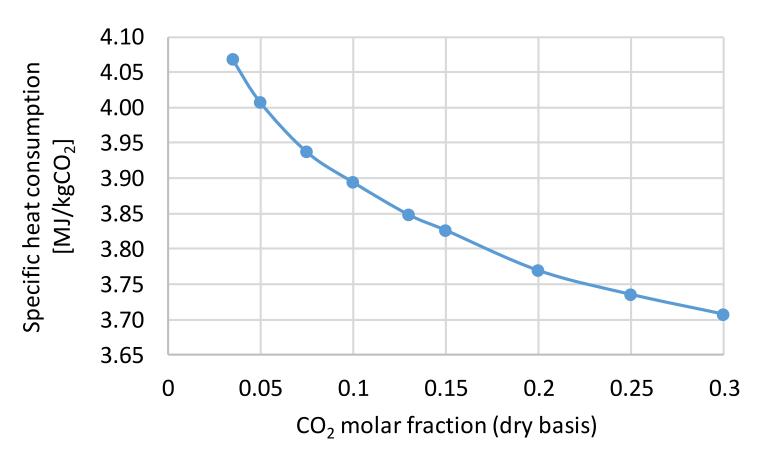
Process flowsheet

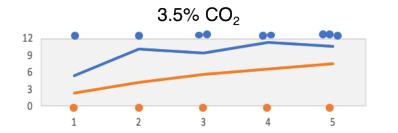
- Direct contact cooler not considered
 - Cooling requirement and transport to DCC very case dependent
 - Feed gas assumed to be saturated after DCC
- CO₂ conditioning excluded

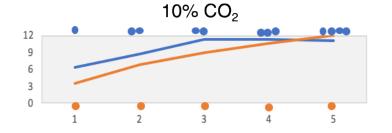
- Additional equipment than commonly considered in literature are included
 - Inventory tanks, thermal reclaimer, filters, etc.

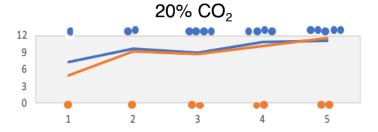
Case matrix				32 MW offshore				1000 MW
 45 cases considered based on combinations of: 				GT		of CO ₂ -rich	gases, t/	coal PP
5 flue gas mass flow rate (313- 3,696 t/h)				313 (vol1)	1159 (vol2)	2004 (vol3)	2850 (vol4)	3696 (vol5)
$> 9 CO_2$ concentration (3.5-30%CO ₂)	Gas turbine	$\widehat{}$	0.035					
		basis)	0.05					
		(dry b	0.075					
		p) u	0.10					
 For each case ➢ Simulation, design, and equipment list 	Coal-fired	fraction	0.13					
		r fra	0.15					
	Cement	molar	0.20					
Full cost evaluation	· · · · · · · · · · · · · · · · · · ·	- Õ	0.25					
	Steel	O	0.30					

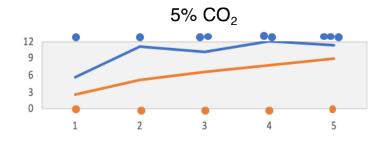
Design basis & assumptions

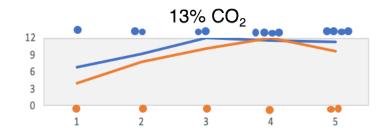

Capture rate [%]	90
Feed composition (dry basis)	N ₂ -CO ₂ binary mixture
Temperature of flue gas feed [°C]	35
Absorber pressure [bara]	1.1
Stripper pressure [bara]	1.8
Maximum column diameter [m]	12
Minimum temperature difference for heat exchange [°C]	10
Lean loading	0.18
MEA mass fraction in lean solvent	0.3

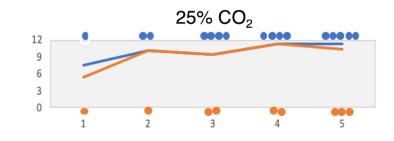

Process modelling results – Specific Reboiler Duty

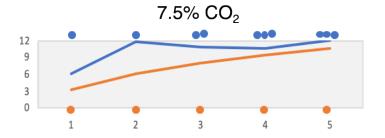

- SRD varies between 3.7 and 4.08 MJ/kgCO₂ depending on the molar concentration
- Values consistent with recent CO₂ capture studies

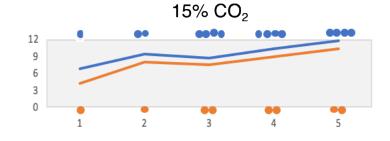


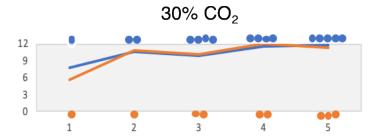



Process modelling results – Column design and sizing



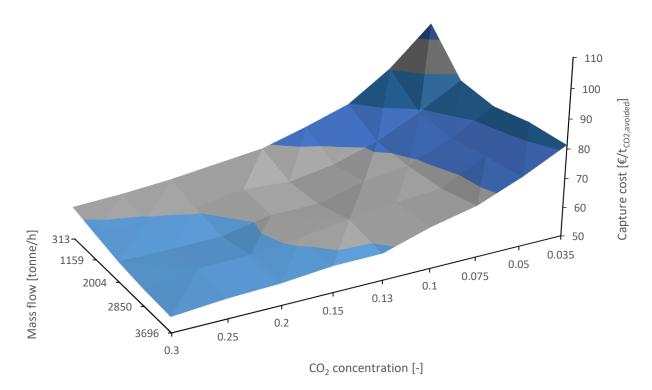






Cost evaluation methodology

- Investment costs
 - Equipment characteristics based on simulation and design margins and limitations
 - Equipment and direct cost assessed with Aspen Process Economic Analyzer
 - Cost escalation to TCR based on well established and transparent approaches from CEMCAP & IEAGHG

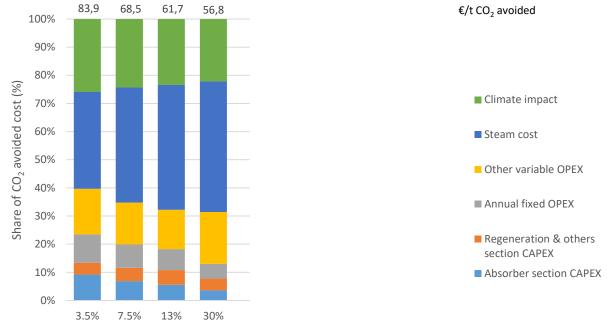


- Operating costs
 - Equipment characteristics based on simulation and design margins and limitations
 - Fixed: Maintenance, insurance, labour
 - Variable: Steam, power, MEA, process and cooling waters
 - Base case: Steam from natural gas boiler
 - ➤ Cost: 25.6 €/MW_{th}h
 - Climate impact: 0.21 t_{CO2}/MW_{th}h
 - KPI

 CO_2 avoidance cost = $\frac{Annualised TCR + Annual OPEX}{Annual CO_2}$ emissions avoided

Impact of scale and flue gas CO₂ concentration

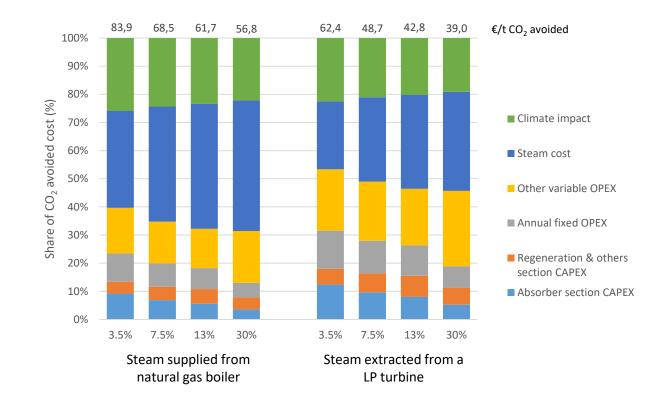
- With smaller scale and decreasing concentration of CO₂ in flue gas, the capture cost increases rapidly
- Economies of scale become more pronounced at flue gas CO₂ concentrations below 7.5%
- The effect of scale becomes less pronounced at CO₂ concentrations above 20%



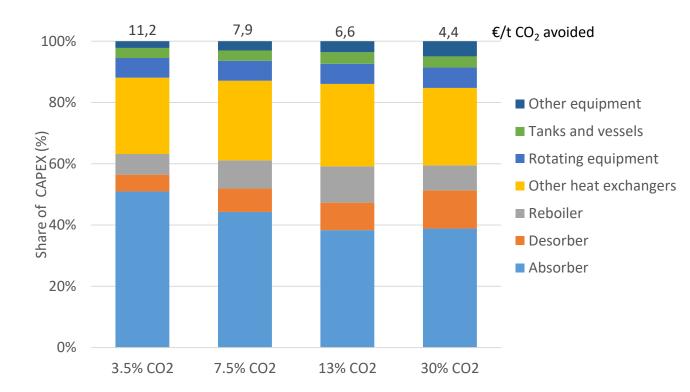
■ 50-60 ■ 60-70 ■ 70-80 ■ 80-90 ■ 90-100 ■ 100-110

Breakdown of CO₂ avoidance cost

- Breakdown of CO₂ avoidance cost exemplified for a constant flue gas mass flow with varying CO₂ concentration
 - Cost of steam and other variable costs become more dominant at higher CO₂ concentrations while CAPEX share decreases


Steam supplied from natural gas boiler

Breakdown of CO₂ avoidance cost


- Breakdown of CO₂ avoidance cost exemplified for a constant flue gas mass flow with varying CO₂ concentration
 - Cost of steam and other variable costs become more dominant at higher CO₂ concentrations while CAPEX share decreases
- Breakdown of CO₂ avoidance cost exemplified for a constant flue gas mass flow with varying CO₂ concentration
 - Cost of steam and other variable costs become more dominant at higher CO₂ concentrations while CAPEX share decreases

Breakdown of CAPEX

- Breakdown of CAPEX exemplified for a constant flue gas mass flow with varying CO₂ concentration
- The absorber is the largest single equipment in terms of CAPEX
 - The absorber share of CAPEX decreases with increasing CO₂ concentration in the flue gas
 - Absorber size is similar between cases while the amount of CO₂ avoided increases with CO₂ concentration

Steam supply scenarios

	Cost	Climate impact	Cost compared to reference	Climate impact compared to reference
Steam supply scenario	€/MW _{th} h	tCO ₂ /MW _{th} h	-	-
Natural gas boiler - reference	25,6	0,21	1,0	1,0
Steam extraction from an LP Turbine	13,3	0,18	0,5	0,9
Coal CHP plant	22,0	0,46	0,9	2,2
Steam produced from waste heat from process	6,8	0	0,3	0,0
Electric boiler - EU	64,4	0,31	2,5	1,5
Electric boiler - Norway	33,3	0,01	1,3	0,1

Steam supply scenarios


	Cost	Climate impact	Cost compared to reference	Climate impact compared to reference
Steam supply scenario	€/MW _{th} h	tCO ₂ /MW _{th} h	-	-
Natural gas boiler - reference	25,6	0,21	1,0	1,0
Steam extraction from an LP Turbine	13,3	0,18	0,5	0,9
Coal CHP plant	22,0	0,46	0,9	2,2
Steam produced from waste heat from process	6,8	0	0,3	0,0
Electric boiler - EU	64,4	0,31	2,5	1,5
Electric boiler - Norway	33,3	0,01	1,3	0,1

Impact of steam supply

- The source of steam and its climate impact, together with the direct cost of steam has a strong impact on the CO₂ avoidance cost
- The choice of steam supply strategy is highly site-specific, e.g. availability of waste heat/steam in upstream process or nearby industry, local/regional el grid characteristics etc.

Conclusions and future work

- Performances evaluation of MEA absorption over a large range of industrial applications (composition and size)
 - Consistent and transparent study
 - > Based on previous project experiences
 - Detailed evaluation of each case considered
 - > Aim to be used as basis for fast performances estimation of MEA benchmark in future studies
- Observed trends
 - > Column size limitations can have significant impact on the plant design and limit scale benefits
 - \succ Cost in €/t decreases as CO₂ concentration and size increase
 - Absorber and desorber represents around 50% of the CAPEX
 - > Steam consumption is often the main cost contributor

Steam production method is key and impacts the CO₂ avoidance cost in two ways: steam cost and climate impact

Conclusions and future work

• Further work

Perform additional cases evaluation in relevant "areas"

□ Smaller volumes for high-purity sources

Larger volumes for low-purity sources

More precise evaluation on water balances

Document and make results widely available

This presentation has been produced with support from the NCCS Centre, performed under the Norwegian research program Centres for Environment-friendly Energy Research (FME). The authors acknowledge the following partners for their contributions: Aker Solutions, ANSALDO Energia, CoorsTek Membrane Sciences, Gassco, KROHNE, Larvik Shipping, Norcem, Norwegian Oil and Gas, Quad Geometrics, Statoil, TOTAL, and the Research Council of Norway (257579/E20).

NORWEGIAN CCS RESEARCH CENTRE

Energy and cost performances baseline of MEA-based CO₂ Capture

Chao Fu^a, Simon Roussanaly^a, Stefania Gardarsdottir^a, Rahul Anantharaman^{a,*}

^aSINTEF Energy Research * <u>Rahul.Anantharaman@sintef.no</u>