NORWEGIAN CCS RESEARCH CENTRE

Energy and cost performances baseline of MEA-based
CO:2 Capture

Chao Fu?, Simon Roussanaly?, Stefania Gardarsdottir2, Rahul Anantharaman2*

‘ aSINTEF Energy Résearch
l—‘ * Rahul.Anantharaman@sintef.no




Outline

e Motivation for this study

* System boundaries and case matrix
* Process modelling

* Economic evaluation

e Conclusion and further work

NC-OS



Motivation of this study

* Benchmarking «novel» capture technologies requires a reference
» Typically MEA in literature due to large data in open literature

Be careful to use

* Inconsistent evaluations from case to case in literature —> literat "
iterature results

» Process configuration
» Design basis

» Assumptions for economic evaluation

e Consistent and transparent study over a large range of industrial applications
» Benchmark for MEA absorption studies
» Fast performance estimation of specific cases

» Based on previous experiences with MEA benchmarking in projects : ReCAP, CEMCAP
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Process flowsheet

* Direct contact cooler not considered

» Cooling requirement and transport to DCC
very case dependent

» Feed gas assumed to be saturated after DCC
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CaSe matrlx . , R —

e 45 cases considered based on

combinations of: - Flowrate of CO,-rich gases, t/h
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» Simulation, design, and equipment
list

> Full cost evaluation
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Design basis & assumptions

Capture rate [%] 90

Feed composition (dry basis) N,-CO, binary mixture
Temperature of flue gas feed [°C] 35

Absorber pressure [bara] 1.1

Stripper pressure [bara] 1.8

Maximum column diameter [m] 12

Minimum temperature difference for heat exchange [°C] 10

Lean loading 0.18

MEA mass fraction in lean solvent 0.3

NC-OS



Process modelling results — Specific Reboiler Duty

* SRD varies between 3.7 and 4.08
MJ/kgCO, depending on the
molar concentration

* Values consistent with recent CO,
capture studies
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Process modelling results — Column design and sizing
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Cost evaluation methodology

* Investment costs * Operating costs
» Equipment characteristics based on simulation and design » Equipment characteristics based on simulation and
margins and limitations design margins and limitations

» Equipment and direct cost assessed with Aspen Process
Economic Analyzer

» Fixed: Maintenance, insurance, labour

» Variable: Steam, power, MEA, process and cooling

» Cost escalation to TCR based on well established and transparent
waters

approaches from CEMCAP & IEAGHG
L Base case: Steam from natural gas boiler

» Cost: 25.6 €/ MW, h

Total equipment cost

(TEC) Total direct cost » Climate impact: 0.21 t.o,/MW,h
Installation (TDC)
Indirect cost | Total Plant Cost * KPI
Process & project (TPC)
contingency , Total Capital i Annualised TCR 4+ Annual OPEX
Interest over construction | Requirement COZ avmdance cost = A l co — d d
Owner cost Sparing (TCR) nnua 2 emissions avolde
Start-up cost
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Impact of scale and flue gas CO,, concentration

e With smaller scale and decreasing
concentration of CO, in flue gas, the
capture cost increases rapidly

110
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e Economies of scale become more
pronounced at flue gas CO,
concentrations below 7.5%
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e The effect of scale becomes less
pronounced at CO, concentrations
above 20%
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Breakdown of CO, avoidance cost

* Breakdown of CO, avoidance cost €/t 0, avoided
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90%
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Breakdown of CO, avoidance cost

* Breakdown of CO, avoidance cost
exemplified for a constant flue gas mass
flow with varying CO, concentration

» Cost of steam and other variable costs
become more dominant at higher CO,
concentrations while CAPEX share
decreases

* Breakdown of CO, avoidance cost
exemplified for a constant flue gas mass
flow with varying CO, concentration

» Cost of steam and other variable costs
become more dominant at higher CO,
concentrations while CAPEX share
decreases
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Breakdown of CAPEX

* Breakdown of CAPEX exemplified for a
constant flue gas mass flow with varying CO,
concentration

 The absorber is the largest single equipment

in terms of CAPEX
» The absorber share of CAPEX decreases with
increasing CO, concentration in the flue gas
» Absorber size is similar between cases while
the amount of CO, avoided increases with
CO, concentration
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Steam supply scenarios

Climate impact

Climate |Cost compared compared to
impact to reference reference

Steam supply scenario €/ MW, h tCO,/MW, h - -

Natural gas boiler - reference 25,6 0,21 1,0 1,0
Steam extraction from an LP Turbine 13,3 0,18 0,5 0,9
Coal CHP plant 22,0 0,46 0,9 2,2
Steam produced from waste heat from process 6,8 0 0,3 0,0
Electric boiler - EU 64,4 0,31 2,5 1,5
Electric boiler - Norway 33,3 0,01 1,3 0,1
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Impact of steam supply

* The source of steam and its climate impact, together with the direct cost of steam has a strong
impact on the CO, avoidance cost

* The choice of steam supply strategy is highly site-specific, e.g. availability of waste heat/steam in
upstream process or nearby industry, local/regional el grid characteristics etc.
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Conclusions and future work

e Performances evaluation of MEA absorption over a large range of industrial applications
(composition and size)

» Consistent and transparent study
» Based on previous project experiences
> Detailed evaluation of each case considered

» Aim to be used as basis for fast performances estimation of MEA benchmark in future studies

* Observed trends
» Column size limitations can have significant impact on the plant design and limit scale benefits
» Cost in €/t decreases as CO, concentration and size increase
» Absorber and desorber represents around 50% of the CAPEX
» Steam consumption is often the main cost contributor

» Steam production method is key and impacts the CO, avoidance cost in two ways: steam cost and climate impact
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Conclusions and future work

e Further work

> Perform additional cases evaluation in relevant "areas"
U Smaller volumes for high-purity sources

O Larger volumes for low-purity sources
» More precise evaluation on water balances

» Document and make results widely available
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