Aspen Plus ENRTL Model for HS3 Blend, a Novel Solvent for CO₂ Capture

PCCC-7 Pittsburgh, September, 25th – 28th

Filippo Bisotti (SINTEF Industry – Process Technology) Matteo Gilardi (SINTEF Industry – Process Technology) Andrew Tobiesen (SINTEF Industry – Process Technology) Hanna K. Knuutila (NTNU) Davide Bonalumi (Politecnico di Milano)

Outlines

- Introduction to REALISE project
- Overview of the HS3 Aspen model
- Model validation
- Conclusions

REALISE Project

Innovation Action

SINTEF coordinator

Final TRL 7

Period: May 2020 – October 2023

Official webpage QR code

REALISE Project

Project Advisory Board

- Concawe scientific division of the European Petroleum Refineries Association
- Petrolneos (UK)
- SARAS (Italy)
- TCM (Norway)
- Global CCS Institute (Australia)
- Science Foundation Ireland
 (Ireland)

HS3 solvent

• Blend of a primary amine and a tertiary amine studied in a previous EUH2020 project (HyPerCap) with promising energy savings

Introduction

- The model includes:
 - Thermodynamics (VLE equilibrium);
 - Kinetics for global reactions;
 - Mass transfer limitations
- The model has been tested and validated on Tiller pilot-scale exp data

Model development

Physical properties definition (vapor pressure, equilibrium constants, Henry...)

Extensive Lab infrastructure

NRTL model

ENRTL activity model development

Mass transfer & kinetics

Validation on Tiller pilot plant

Thermodynamic framework development

thermodynamic model

solvent case study, International Journal of Greenhouse Gas Control, June 2023, https://doi.org/10.1016/j.ijggc.2023.103911

Physical properties fitted to experimental data

- Henry constant (using N₂O analogy) for both amines
- Amines vapour pressure
- Density
- Heat capacity of the liquid phase

@realise-ccus | www.realiseccus.eu | 9

A. Hartono, Vevelstad, S, Grimstvedt, A, Hovdahl, L, Wiig, M, Chikukwa, A, Hjarbo, K, Gjertsen, F, Tjessem, V, S. Hauger, *Realise D1.1* Solvent optimization: Experimental characterization of REALISE solvent I.M. Bernhardsen, A.A. Trollebø, C. Perinu, H.K. Knuutila, *Vapour-liquid equilibrium study of tertiary amines, single and in blend with 3-(methylamino)propylamine, for postcombustion CO2 capture, Journal of Chemical Thermodynamics.* 138 (2019) 211–228. <u>https://doi.org/10.1016/j.jct.2019.06.017</u>

NRTL coefficients (BINARY INTERACTION - NRTL)

Aspen Plus					Source of
NRTL	Parameters	Component i	Component j	Value (SI units)	experimental
coefficient					values
NRTL/1	A _{ij}	H ₂ O	AP	5.3843	
NRTL/2	B _{ij}	H ₂ O	AP	-0.9199	(Rupovska
NRTL/1	A _{ji}	AP	H ₂ O	-989.213	(BUNEVSKA,
NRTL/2	B _{ii}	AP	H ₂ O	-440.101	2021)
NRTL/3	$\alpha_{ij} = \alpha_{ji}$	H ₂ O	AP	0.2	
NRTL/1	A _{ij}	H ₂ O	PRLD	1.1755	
NRTL/2	B _{ij}	H ₂ O	PRLD	-0.1156	(Pornhardson
NRTL/1	A _{ji}	PRLD	H ₂ O	-1103.81	(Bernnarusen
NRTL/2	B _{ii}	PRLD	H ₂ O	1715.89	et al., 2019)
NRTL/3	$\alpha_{ij} = \alpha_{ji}$	H ₂ O	PRLD	0.2	

8 Molecule-molecule interactions

Non-randomness coefficients fixed as in Chen et al.

I.M. Bernhardsen, A.A. Trollebø, C. Perinu, H.K. Knuutila, Vapour-liquid equilibrium study of tertiary amines, single and in blend with 3-(methylamino)propylamine, for postcombustion CO2 capture, Journal of Chemical Thermodynamics. 138 (2019) 211–228. https://doi.org/10.1016/j.jct.2019.06.017

T. Bunevska, Characterization of a solvent for chemical absorption-based CO2 capture, NTNU Thesis, 2021.

C. Chen, Y. Song, *Generalized electrolyte-NRTL model for mixed-solvent electrolyte systems*, AIChE Journal. 50 (2004) 1928–1941. https://doi.org/10.1002/aic.10151.

Electrolyte-NRTL model

ENRTL is an activity-based thermodynamic model

The activity accounts for:

- Long-range interactions
- **Short-range interactions** -
- Born correction -

Short-range interactions

$$\ln(\gamma_i) = \frac{\sum_{j=1}^n x_j \cdot \tau_{ji} \cdot G_{ji}}{\sum_{k=1}^n x_k \cdot G_{ki}} + \sum_{j=1}^n \frac{x_j \cdot G_{ij}}{\sum_{k=1}^n x_k \cdot G_{kj}} \cdot \left(\tau_{ij} - \frac{\sum_{m=1}^n x_m \cdot \tau_{mj} \cdot G_{mj}}{\sum_{k=1}^n x_k \cdot G_{kj}}\right)$$

$$G_{ji} = \exp(-\alpha_{ij} \cdot \tau_{ij})$$

 $\tau_{ij} = \mathbf{A}_{ij} + \frac{\mathbf{B}_{ij}}{\mathbf{T}[\mathbf{K}]}$

$$_{ij} - \frac{\sum_{m=1}^{n} x_m \cdot t_{mj} \cdot G_{mj}}{\sum_{k=1}^{n} x_k \cdot G_{kj}} \right)$$

Renon, H., Prausnitz, J.M., 1969. Estimation of Parameters for the NRTL Equation for Excess Gibbs Energies of Strongly Nonideal Liquid Mixtures, Industrial & Engineering Chemistry Process Design and Development 8, 413–419. https://doi.org/10.1021/i260031a019 Renon, H., Prausnitz, J.M., 1968. Local compositions in thermodynamic excess functions for liquid mixtures, AIChE Journal 14, 135– 144. https://doi.org/https://doi.org/10.1002/aic.690140124

ELECNRTL coefficients (ELECTROLYTE PAIR – GMELCC/GMELCD)

Molecule-ion interactions

- 24 **GMELCC** (temperature-independent parameters)
- 10 **GMELCD** (temperature-dependent parameters)

 $\frac{3n_M!}{n_M-2}+5n_Mn_Cn_A$

 n_{M} – number of molecules n_{C} – number of cations n_{A} – number of anions

HS3 solvent could be defined by 276 coefficients and <u>34</u> parameters allow to reduce by 88% the amount of adjusted parameters

M. Gilardi, F. Bisotti et al., An approach for VLE model development, validation, and implementation in Aspen Plus for amine blends in CO2 capture: the HS3 solvent case study, International Journal of Greenhouse Gas Control, June 2023, https://doi.org/10.1016/j.ijggc.2023.103911

ELECNRTL			Value (SI	
coefficient	Element i	Element j	value (Si	
Aspen Plus name			units)	
GMELCC	H ₂ O	(PRLDH⁺,HCO ₃ -)	13.6961	I III AS A
GMELCC	(PRLDH⁺,HCO ₃ -)	H ₂ O	-5.4276	
GMELCC	PRLD	(PRLDH⁺,HCO ₃ -)	29.0442	1993
GMELCC	(PRLDH⁺,HCO ₃ -)	PRLD	8.7717	$\mathbf{D} \in \mathbf{D}$
GMELCC	H ₂ O	(APH⁺,HCO ₃ ⁻)	12.6182	~ 100
GMELCC	(APH⁺,HCO ₃ ⁻)	H ₂ O	-5.5317	
GMELCC	H ₂ O	(APH ⁺ ,APCOO ⁻)	10.5229	
GMELCC	(APH⁺, APCOO⁻)	H ₂ O	-6.9975	
GMELCC	AP	(APH ⁺ , HCO ₃ ⁻)	87.2557	
GMELCC	(APH ⁺ , HCO ₃ ⁻)	AP	60.3790	
GMELCC	AP	(APH⁺, APCOO⁻)	20.7888	
GMELCC	(APH⁺, APCOO⁻)	AP	34.8014	
GMELCC	H ₂ O	(PRLDH⁺, APCOO⁻)	10.9464	
GMELCC	(PRLDH⁺, APCOO⁻)	H ₂ O	-5.1289	
GMELCC	AP	(PRLDH ⁺ , HCO ₃ ⁻)	52.3316]
GMELCC	(PRLDH ⁺ , HCO ₃ ⁻)	AP	35.0286	
GMELCC	AP	(PRLDH⁺, APCOO⁻)	4.5923	
GMELCC	(PRLDH⁺, APCOO⁻)	AP	-1.3794]
GMELCC	PRLD	(PRLDH⁺, APCOO⁻)	12.5491	
GMELCC	(PRLDH⁺, APCOO⁻)	PRLD	2.8911	
GMELCC	PRLD	(APH ⁺ , HCO ₃ ⁻)	11.6230	
GMELCC	(APH⁺, HCO ₃ ⁻)	PRLD	0.1155	
GMELCC	PRLD	(APH⁺, APCOO⁻)	7.4596	
GMELCC	(APH⁺, APCOO⁻)	PRLD	19.9230	
GMELCD	PRLD	(PRLDH ⁺ , HCO ₃ ⁻)	888.2463	
GMELCD	$(PRLDH^+, HCO_3^-)$	PRLD	8810.9267	
GMELCD	AP	(APH⁺, HCO ₃ ⁻)	1959.2531	
GMELCD	(APH⁺, HCO ₃ ⁻)	AP	1514.6851	
GMELCD	AP	(APH⁺, APCOO⁻)	-259.7171	
GMELCD	(APH ⁺ , APCOO ⁻)	AP	432.8310	
GMELCD	AP	(PRLDH ⁺ , APCOO ⁻)	530.2970	eccus.eu
GMELCD	(PRLDH ⁺ , APCOO ⁻)	AP	-789.5392	1000
GMELCD	PRLD	(PRLDH ⁺ , APCOO ⁻)	-2337.3930	
GMELCD	(PRLDH ⁺ , APCOO ⁻)	PRLD	-66.6320	Post Combustion Capture Conference

12

VLE

- **Reliability** has been checked by two indexes:
- AARD Average Absolute Relative deviation of CO₂ and H₂O partial pressures (with respect to exp. data);
- > AAD Average Absolute Deviations.

$$AARD = \frac{1}{n} \cdot \sum_{I=1}^{n} \left| \frac{z_{i,exp} - z_{i,mod}}{z_{i,exp}} \right| \qquad AAD = \sqrt{\sum_{i=1}^{n} \frac{\left(z_{i,exp} - z_{i,mod}\right)^{2}}{n}}$$

VLE (model accuracy)

		AAR	D [%]	AAD	[kPa]	
Model	Data source	P _{CO2}	P _{H2O}	P _{CO2}	P _{H2O}	
ELECNRTL	Hartono et al.	17.84	17.00	0.0712	0.0705	

@realise-ccus | www.realiseccus.eu | 14

M. Gilardi, F. Bisotti et al., An approach for VLE model development, validation, and implementation in Aspen Plus for amine blends in CO2 capture: the HS3 solvent case study, International Journal of Greenhouse Gas Control, June 2023, https://doi.org/10.1016/j.jjggc.2023.103911

Heat of absorption

- Heat of formation of APH+, APCOO-, and PRLDH+ tuned on the experimental data

Hartono, Vevelstad, S, Grimstvedt, A, Hovdahl, L, Wiig, M, Chikukwa, A, Hjarbo, K, Gjertsen, F, Tjessem, V, S. Hauger, *Realise D1.1* Solvent optimization: Experimental characterization of REALISE solvent

@realise-ccus | www.realiseccus.eu | 15

M. Gilardi, et al., An approach for VLE model development, validation, and implementation in Aspen Plus for amine blends in CO2 capture: the HS3 solvent case study, International Journal of Greenhouse Gas Control, June 2023, https://doi.org/10.1016/j.ijggc.2023.103911

Kinetics

• Arrhenius-type kinetics for global AP and PRLD reactions with CO2 has been taken from the literature.

AP	Penny and Ritter [19	83]	Henni et al. [2008]	$AP + CO_2 + H_2O$
A [L/mol/s]	1,26E+12		6.6E+11	In accordance with
Eact [cal/mol]	11132.35		10838.7	amine solvents, th reaction and the r
				using the thermo
PRLD	Liu et al. [2017]			
A [L/mol/s]	7.61E+8		$PRLD + CO_2 + H_2O$	\rightarrow PRLDH ⁺ + HCO ₃ ⁻
Eact [cal/mol]	9783.99			

$AP + CO_2 + H_2O \rightarrow APCOO^- + H_3O^+$

In accordance with other Aspen's framework for amine solvents, the kinetic is set **carbamate reaction** and the reverse kinetic is calculated using the **thermodynamic consistency** for the carbamate reaction

temperature range of 298-313 K using the stopped-flow technique, Industrial and Engineering Chemistry Research. 47 (2008) 2213–2220.
 <u>https://doi.org/10.1021/ie070587r</u>
 H. Liu, M. Li, R. Idem, P. Tontiwachwuthikul, Z. Liang, Analysis of solubility, absorption heat and kinetics of CO2 absorption into 1-(2-hydroxyethyl)pyrrolidine solvent,

Chemical Engineering Science. 162 (2017) 120–130. https://doi.org/10.1016/j.ces.2016.12.070

Mass transfer

Aspen Plus®, AspenONE[™] V11.0 Documentation Aspen Plus®, Aspen Plus® V11.0 Documentation, (2019)

Tiller Building

Tiller full height absorber and desorber

SINTEF Industry Tiller pilot plant

- □ Tiller CO₂-lab built 2010
- A flexible full height absorption laboratory infrastructure dedicated to pilot plant activities for CO₂ capture.
- Housed is a 400m² hall with adjacent analytical laboratory and control room infrastructure.
- The hall has up to 30 meter roofheight with good accessibility along the height from 11 floors in the tower.
- Facility enables excellent conditions for controlled indoor pilot experiments.

Post compus

Model validation on Tiller data: open loop - absorber

All 53 Tiller runs have been tested.

- INPUT DATA (equal to exp data)
- L and G flow, temperature, pressure
- Gas composition (saturation conditions)
- HS3 solvent composition
- Lean loading
- Column design (packing height, diameter)

- OUTPUT (to compare)
- \succ Flow of captured CO₂
- \succ % of CO₂ captured
- > Temperature profile
- Rich loading

Results: absorber temperature profiles (5.5 mol%) - absorber

Vapou	(orange solid)
Liquid	(blue dashed)

solid)		All runs	5.5% vol CO ₂	12% vol CO ₂	
shed)	ARD%	2.41	6.37	-0.53	
	AARD%	3.67	5.37	1.66	
	Stand Dev [°C]	2.38	4.00	1.20	www.realiseccus.eu

20

Results: absorber temperature profiles (12 mol%) - absorber

Vapour (orange solid)		All runs	5.5% vol CO ₂	12% vol CO ₂	
Liquid (blue dashed)	ARD%	2.41	6.37	-0.53	, h
	AARD%	3.67	6.37	1.66	
	Stand Dev [°C]	2.38	4.00	1.20	wwv

www.realiseccus.eu | 21

Results: residual charts - absorber

Captured CO₂ mass flow

All runs

-1.41

4.49

1.47

ARD%

AARD%

Stand Dev [kg/h]

5.5% vol

3.35

3.35

0.81

12% vol

-4.42

5.63

1.81

Stand Dev

0.0080

Rich loading

0.0025

0.0081

Model validation on Tiller data: open loop - stripper

All 53 Tiller runs have been tested.

- INPUT DATA (equal to exp data)
 - Solvent loading after absorption
- Feed temperature
- Column pressure and pressure drops
- > Duty
- Column design (packing height, diameter)

- OUTPUT (to compare)
- \succ Released CO₂ flow
- Specific reboiler duty (SRD)
- > Temperature profile
- lean loading of the regenerated solvent

Kinetics is disregarded (only mass transfer)

Results: absorber temperature profiles (5.5 mol%) - stripper

Vapour (orange solid)		All runs	5.5% vol CO ₂	12% vol CO ₂	4 4
Liquid (blue dashed)	ARD%	2.21	2.19	2.23	
	AARD%	2.84	2.81	2.87	n i si s
	Stand Dev [°C]	1.58	4.31	4.59	www.realisecc

Results: absorber temperature profiles (12 mol%) - stripper

Vapour (orange solid)		All runs	5.5% vol CO ₂	12% vol CO ₂	.
Liquid (blue dashed)	ARD%	2.21	2.19	2.23	
	AARD%	2.84	2.81	2.87	uri të Milling (c.
	Stand Dev [°C]	1.58	4.31	4.59	www.realise

Results: residual charts - stripper

Released CO₂ mass flow

All runs

1.18

4.38

1.58

ARD%

AARD%

Stand Dev [kg/h]

5.5% vol

1.61

2.13

0.60

12% vol

0.88

5.87

2.01

Stand Dev

0.012

0.009

0.013

Model validation on Tiller data: close loop

Stripper duty

Solvent and gas T, P, flow and composition

> CO₂ capture ratio Cycling capacity

Model validation on Tiller data: close loop - results

	Capt. ratio	Cycling capacity	
ARD%	0.86	1.30	
AARD%	2.64	4.34	

@realise-ccus | www.realiseccus.eu | 28

Run

Conclusions

- Comprehensive model: thermodynamics kinetics mass transfer
- The new HS3 model in Aspen Plus V11.0 has been validated on Tiller data
- <u>Both open and close-loop validations</u> have been successfully accomplished
- Validation provides average errors below 5% for the main KPI (capture rate, energy consumption, cycling capacity)

Why HS3?

Lower liquid amount

	5% vol flue gas				11% vol flue gas			
	HS	63 (model)	MEA 3	0% w (model)	HS	63 (model)	MEA	30% w (model)
Cap. Ratio	SDR	Lean – L/G	SDR	Lean – L/G	SDR	Lean – L/G	SDR	Lean – L/G
90%	3.45	0.077 - 15.3	3.86	0.268 - 35.6	3.07	0.073 - 12.8	3.49	0.34 - 32.0
95%	3.50	0.058 - 15.5	-	-	3.11	0.056 - 12.9	3.54	0.32 - 32.1

Specific Reboiler Duty [MJ/kg_{CO2}]

L/G ratio [kg_{solvent}/kg_{CO2}]

data for optimized MEA solvent plant by Abu-Zahra, 2007 and Jaeuk Choi, 2019

M.R.M. Abu-Zahra, L. H.J. Schneiders, J. Niederer, P.H.M. Feron, G. Versteeg, CO2 capture from power plants: Part I. A parametric study of the technical performance based on monoethanolamine, International Journal of Greenhouse Gas Control, 1(1), April 2007, 37-46, https://doi.org/10.1016/S1750-5836(06)00007-7

@realise-ccus | www.realiseccus.eu | 30

J. Choi, H. Cho, S. Yun, M-Gi Jang, Se-Young Oh, M. Binns, Jin-Kuk Kim, *Process design and optimization of MEA-based CO2 capture processes for non-power industries*, Energy, 185, 2019, 971-980, <u>https://doi.org/10.1016/j.energy.2019.07.092</u>

Publications

[1] M. Gilardi, F. Bisotti, A. Tobiesen, H. K. Knuutila, D. Bonalumi, *An approach for VLE model development, validation, and implementation in Aspen Plus for amine blends in CO2 capture: the HS3 solvent case study*, International Journal of Greenhouse Gas Control, June 2023, <u>https://doi.org/10.1016/j.ijggc.2023.103911</u>

[2] M. Gilardi, F. Bisotti, H. K. Knuutila, D. Bonalumi, *HS3 as a novel solvent for carbon capture: ELECNRTL model validation and application to an industrial case study with a comparative assessment against benchmark MEA*, paper under submission International Journal of Greenhouse Gas Control 126 (2023) 103911

An approach for VLE model development, validation, and implementation in Aspen Plus for amine blends in CO₂ capture: the HS3 solvent case study

Matteo Gilardi ^{a,b,1,*}, Filippo Bisotti ^{b,1,*}, Andrew Tobiesen ^b, Hanna K. Knuutila ^c, Davide Bonalumi ^a

^a Politecnico di Milano- Department of Energy, via Lambruschini 4A, 20156, Milano, Italy

^b SINTEF Industry - Process Technology, KPMT - Kjemisk prosess og miljøteknologi, Richard Birkelands vei 3, 7034, Trondheim, Norway

^c Department of Chemical Engineering, Norwegian University of Science and Technology, NTNU, Trondheim, NO-7491, Norway

Acknowledgements

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 884266

Thank you for listening

	Presenter
Presenter Name	Filippo Bisotti
	Matteo Gilardi
Presenter Email	filippo.bisotti@sintef.no matteo.gilardi@sintef.no

	Project
@realise-ccus	
www.realiseccus.eu	
info@realiseccus.eu	
info@realiseccus.eu	

Q&A

Thank you for your kind attention

