Modelling CO₂ capture with AMP in NMP

SANKU, M., DR. SVENSSON, H.

LUND UNIVERSITY

Outline

- Background of our research
- Model
 - Work so far / Shortcomings / Proposed improvements
- Remaining properties
 - Gaps: data in aqueous medium (literature)
 - Gaps: data in NMP medium (experimental)
 - Properties of precipitate
 - Properties of transfer
- Future work

The system

Solvent:

NMP (N-methyl-2-pyrrolidone) Amine:

AMP (2-amino-2-methyl-1-propanol)

Note: AMP is sterically hindered

Reaction mechanism

 $CO_{2}(g) \leftrightarrow CO_{2}(sol)$ $CO_{2}(sol) + RNH_{2}(sol) \leftrightarrow RNH_{2}^{+}COO^{-}(sol)$ $RNH_{2}^{+}COO^{-}(sol) + RNH_{2}(sol) \leftrightarrow RNH_{3}^{+}(sol) + RNHCOO^{-}(sol)$ $RNH_{3}^{+}(sol) + RNHCOO^{-}(sol) \leftrightarrow RNH_{3}^{+}RNHCOO^{-}(s)$

Model: What we want to do?

Predict the lean and rich stream loading

• Energy requirements for the plant

Test different plant configurations

What we have done?

ENRTL-RK

- No solid data or ternary data
- Approximations when data unavailable
- Not heat integrated yet

Model vs experimental

Energy requirement (25w% AMP in NMP)

Model	Experiment
8.1 GJ/ton CO ₂	14.4 GJ/ton CO ₂
1.01 bar a T _{abs} =50 °C T _{reg} =75 °C	7 bar a T _{abs} =45 °C T _{reg} =75 °C
No crystallisation	Crystallisation Heating of the reactor

Total pressure at 85 °C, AMP in NMP

Solution	Model (bar a)	Experiment (bar a)*
15w% AMP in NMP	0.022	0.037
25w% AMP in NMP	0.025	0.075

* "Regeneration of Non-Aqueous Precipitating Amine Solvents" by Hanna K. Karlsson at PCCC-4, Birmingham, Alabama

Assumed binary NRTL parameters

Outlet of regeneration

	Unit	Model
Temperature	°C	85
Pressure	bar a	2.52
H ₂ O	kmol/hr	1.00E-10
CO ₂	kmol/hr	0.014465
AMP	kmol/hr	0.1261
NMP	kmol/hr	0.8586
AMP+COO-	kmol/hr	1.73E-34
AMP ⁺	kmol/hr	0.0211
AMPCOO-	kmol/hr	0.0211
SOLID	kmol/hr	0

Inlet: 15w% AMP in NMP CO₂ loading=0.2

Outlet of regeneration

	Unit	Model
Temperature	°C	85
Pressure	bar a	2.52
H ₂ O	kmol/hr	1.00E-10
CO ₂	kmol/hr	0.014465
AMP	kmol/hr	0.1261
NMP	kmol/hr	0.8586
AMP+COO-	kmol/hr	1.73E-34
AMP+	kmol/hr	0.0211
AMPCOO-	kmol/hr	0.0211
SOLID	kmol/hr	0

Inlet: 15w% AMP in NMP CO₂ loading=0.2

Species in the liquid phase (about 60 mole% CO₂)

Outlet of regeneration

	Unit	Model	
Temperature	°C	85	$\begin{bmatrix} 15\%\% \text{ AMP in NMP} \\ CO_{\circ} \text{ loading}=0.2 \end{bmatrix}$
Pressure	bar a	2.52	Experiment:
H ₂ O	kmol/hr	1.00E-10	At the same conditions,
CO ₂	kmol/hr	0.014465	the solution has much
AMP	kmol/hr	0.1261	lower CO ₂ *
NMP	kmol/hr	0.8586	
AMP+COO-	kmol/hr	1.73E-34	Species in the liquid phase
AMP ⁺	kmol/hr	0.0211	(about 60 mole% CO_2)
AMPCOO ⁻	kmol/hr	0.0211	
SOLID	kmol/hr	0	* "Regeneration of Non-Aqueous Precipitating Amine Solvents" by Hanna K.

Karlsson at PCCC-4, Birmingham, Alabama

Approximations

- · Dielectric constant of NMP is constant with temperature
- Properties of $RNH_2^+COO^-(aq) \approx H^+PZCOO^-(aq)$, $RNHCOO^-(aq) \approx PZCOO^-(aq)$
- Binary NRTL parameters approximated
- He constant for CO_2 in AMP assumed same as CO_2 in NMP
- No solid or ternary data
- Approximated infinite dilution heat capacity of the ions for our system

Improvements

Property	Method
Heat of vaporization	Vapor pressure of pure solvents
Binary parameters	Vapor pressure of mixtures – loaded and unloaded
Henry's constant	Measured in NMP, will be measured in AMP with N ₂ O
Heat capacity of solid	Measure with solid calorimetry
Molar volume of solid	Density of a whole crystal

What would still be missing?

- Properties of RNH⁺₂COO⁻, RNHCOO⁻
- Properties of the precipitate
- Dielectric constant of NMP with temperature
- Ternary data
- Infinite dilution heat capacity of the ions for our system

Simplifications

 $CO_2(g) \leftrightarrow CO_2(sol)$ $CO_2(sol) + 2RNH_2(sol) \leftrightarrow RNH_3^+(sol) + RNHCOO^-(sol)$ $RNH_3^+(sol) + RNHCOO^-(sol) \leftrightarrow RNH_3^+RNHCOO^-(s)$

Assumptions:

- Zwitterion concentration and impact is negligible
- The precipitate completely dissociates to ions
- Single solid phase

$CO_2(aq) + 2RNH_2(aq) \stackrel{K_1}{\leftrightarrow} RNH_3^+(aq) + RNHCOO^-(aq)$

Pure component data available

 $CO_2(aq) + 2RNH_2(aq) \stackrel{K_1}{\leftrightarrow} RNH_3^+(aq) + RNHCOO^-(aq)$

Pure component data available

 $CO_2(aq) + 2RNH_2(aq) \stackrel{K_1}{\leftrightarrow} RNH_3^+(aq) + RNHCOO^-(aq)$

$\operatorname{RNH}_2(aq) + \operatorname{H}^+(aq) \stackrel{\mathsf{K}_p}{\leftrightarrow} \operatorname{RNH}_3^+(aq)$

Note: aqueous medium

$$CO_{2}(g) \stackrel{\mathsf{H}}{\leftrightarrow} CO_{2}(sol)$$

$$CO_{2}(sol) + 2RNH_{2}(sol) \stackrel{\mathsf{K}_{1}}{\leftrightarrow} RNH_{3}^{+}(sol) + RNHCOO^{-}(sol)$$

$$\Delta H_{2} = \Delta H_{22} + \Delta H_{23}$$

 $\Delta n_r - \Delta n_{\rm CO_2} + \Delta n_{r1}$

Experiments: without precipitation

Pure component properties (NMP)Without precipitation
 $CO_2(g) \leftrightarrow CO_2(sol)$ Measured separately
 $CO_2(sol)$ $CO_2(sol) + 2RNH_2(sol) \leftrightarrow RNH_3^+(sol) + RNHC00^-(sol)$ Measured $\Delta H_r = \Delta H_{CO_2} + \Delta H_{r1}$

Assumptions:

 $CO_2(sol)$ in the solution is same as in the absence of AMP $CO_2(sol)$ in AMP will be measured

Properties of the solid

 $CO_{2}(g) \stackrel{H}{\leftrightarrow} CO_{2}(sol)$ $CO_{2}(sol) + 2RNH_{2}(sol) \stackrel{K_{1}}{\leftrightarrow} RNH_{3}^{+}(sol) + RNHCOO^{-}(sol)$ $RNH_{3}^{+}(sol) + RNHCOO^{-}(sol) \stackrel{K_{2}}{\leftrightarrow} RNH_{3}^{+}RNHCOO^{-}(s)$ $\Delta H_{r} = \Delta H_{CO_{2}} + \Delta H_{r1} + \Delta H_{r2}$

Experiments with precipitation

Properties of the solid

 $\frac{d \ln K_2}{dT} = \frac{\Delta H_{r2}}{RT^2}$ at constant pressure

Properties of the solid

Properties of the solid

Summary of missing properties

Properties of transfer

• $\ln K_2$ at any T

• $\ln K_1$ at any T

Properties of transfer

Aspen plus requires properties in water

Evaluation of experimental data needs properties in NMP

Properties of CO₂ and AMP in NMP

- Directly measured
- CO₂ in NMP: Using Henry's constants & enthalpy for CO₂ physical absorption
- AMP in NMP: Enthalpy of mixing & vapor pressure of mixtures

- Solubility product
- Properties of ions separately and then combine
- o Born equation

$RNH_{3}^{+}(sol) + RNHCOO^{-}(sol) \stackrel{K_{2}}{\leftrightarrow} RNH_{3}^{+}RNHCOO^{-}(s)$ $\ln \gamma_{\pm,t}^{m} = \ln \frac{K_{2,water}}{K_{2,NMP}}$

- Solubility product
- Properties of ions separately and then combine
- \circ Born equation

How to get properties of transfer? $RNH_3^+(sol) + RNHCOO^-(sol)^{K_2} + RNH_3^+RNHCOO^-(s)$ $\ln \gamma_{\pm,t}^m = \ln \frac{K_{2,water}}{K_{2,NMP}}$ In water, the salt forms

bicarbonate!

- Solubility product
- Properties of ions separately and then combine
- \circ Born equation

Not enough data

- Solubility product
- $\circ~$ Properties of ions separately and then combine
- o Born equation

$$\ln \gamma_{\pm,t}^* = \frac{q^2}{2} \left\{ \left(\frac{1}{R_{c2}D_2} - \frac{1}{R_{c1}D_1} \right) + \left(\frac{1}{R_{c1}} - \frac{1}{R_{c2}} \right) \right\}$$

Radius of cavity Dielectric constant

Transfer properties of the salt

- Solubility product
- Properties of ions separately and then combine
- \circ Born equation

"Reevaluation of the Born model of ion hydration" by Rashin and Honig *J. Phys. Chem.*, 1985, *89* (26), pp 5588–5593

"Reevaluation of the Born model of ion hydration" by Rashin and Honig *J. Phys. Chem.*, 1985, *89* (26), pp 5588–5593 Missing data

Measuring or estimating radius of cavity

• $\ln K_2$ at any T

• $\ln K_1$ at any T

Future work

- Equilibrium constants at one temperature
- Further studies on estimating radius of cavity
- Experimental determination of the mentioned properties
- Infinite dilution heat capacity of the ions for our system
- Ternary data
- Tweeking binary data to better fit the ternary data
- Accounting for two solid phases
- Using ENRTL-RK or extended-UNIQUAC
- Validation of properties, plant simulation with continuous setup and batch calorimetry

