

16th International Conference on Greenhouse Gas Control Technologies GHGT-16

23-27th October 2022, Lyon, France

Accelerating Underground Hydrogen Storage with CO₂ Storage Experience. Developing a Hydrogen Storage Demonstration at the Otway International Test Centre.

Max Watson^a*, Jonathan Ennis-King^b, Allison Hortle^c, Matthias Raab^a, Paul Barraclough^a

^aCO2CRC Ltd. 11 – 15 Argyle Place South, Carlton VIC 3053, Australia. ^bCommonwealth Scientific and Industrial Research Organization, Clayton, Victoria 3168, Australia. ^cCommonwealth Scientific and Industrial Research Organization, Kensington, Perth 6151, Australia.

Abstract

Underground hydrogen storage (UHS) is recommended as a cost-effective solution to provide large volume hydrogen (H₂) supply security. Porous geological storage resources are an ideal UHS option to address this, providing a vast range of geographically favourable storage locations and ample capacity and the low cost required for the projected growth in the global hydrogen economy.

The technical readiness for industries to undertake UHS in porous rock, however, is low, with the need to address scientific questions around how stored hydrogen interacts with subsurface rocks and fluids, and how this impacts the storage efficiency. While H_2 storage has taken place in salt caverns, for underground methanation or as part of a mixed gas, no field demonstration of pure H_2 injection and withdrawal for addressing H_2 supply and energy security has taken place in porous reservoirs. The development of UHS technologies, fortunately can be rapidly achieved through the innovation of existing CO_2 and natural gas storage know-how, processes and infrastructure. Much work is being undertaken within research organisations renowned for their CO_2 storage technology, and this conversion of existing knowledge to UHS is progressing rapidly.

A commercially relevant demonstration of UHS is the next step in the development of UHS technology, providing the knowledge and confidence for future large investment into commercial scale UHS. CO2CRC, in partnership with CSIRO, is undertaking the development phase for a field-scale demonstration of porous UHS. CO2CRC's Otway International Test Centre's (OITC) state-of-the art storage and monitoring facilities and the partnership's advanced geological and reservoir engineering knowledge makes it the ideal option for cost effectively and rapidly maturing UHS technology through field demonstration. This demonstration will form a proxy for commercial scale UHS operations, including safe storage and handling protocols and provide a platform for technology development in UHS.

The conceptual plan for this UHS demonstration is to undertake the receival of H_2 , compress and inject it, via a purpose drilled H_2 well, into an already comprehensively characterised depleted reservoir target ~2 km below the

^{*} Corresponding author. Tel.: +61 420 209 277, E-mail address: Max.Watson@co2crc.com.au

GHGT-16 Watson

surface. Advanced monitoring systems would confirm the containment of the H_2 and appraise the subsurface H_2 processes. Stored H_2 will then be extracted, and the performance of this extraction assessed in terms of recovery rate, recovery volume and H_2 purity. Pre-existing gases in the depleted fields will be utilised to maintain pressure and assist recovery in a manner than minimises gas mixing. Several cycles of H_2 injection and withdrawal will likely take place to assess the performance of the reservoir itself as a temporary storage system. The facility itself and resulting data will be accessible to the research community and industry to collaborate in the demonstration, trial specific technologies and as a training and education vehicle.

This commercially relevant venture will use CO_2 storage expertise and CCS research facilities to form a world leading demonstration of H_2 injection and withdrawal within a depleted reservoir. The demonstration will provide a proof-of-concept of large-scale safe porous geological storage of H_2 as a solution for managing H_2 supply challenges at scale and demonstrating it as a vital infrastructure requirement for a safe and holistic Hydrogen economy.

Keywords: Hydrogen; Underground; Storage; Porous; Demonstration; Otway