

RTI's Solid Sorbent-Based CO₂ Capture Process: Technical and Economic Comparison for Application in Coal-fired Power, NGCC, and Cement Plants

> 4th Post Combustion Capture Conference Birmingham, AL Dr. Paul Mobley

www.rti.org

Energy Technologies at RTI International

10 () International Offices

rch Triangle Park, NC	
Ann Arbor, MI	Abu Dhabi
Atlanta, GA	Barcelona
Berkeley, CA	Beijing
Chicago, IL	Jakarta
Fort Collins, CO	Ljungskile
Portland, OR	Manchester
Rockville, MD	Nairobi
San Francisco, CA	New Delhi
Seattle, WA	San Salvado
Waltham, MA	Toronto
Washington, DC	

ENERGY TECHNOLOGIES

Developing advanced process technologies for energy applications by partnering with industry leaders

Natural Gas

Carbon Capture & Utilization

Resea

Clean Coal / Syngas Processing

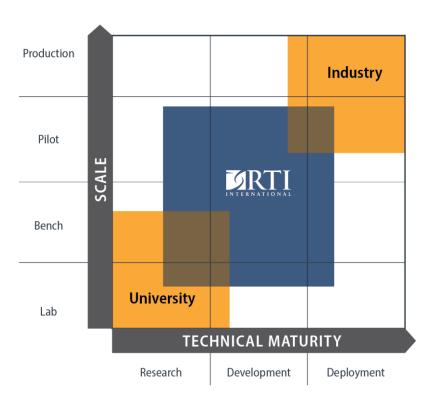
Industrial Water Treatment

Advanced Materials

Biomass Conversion

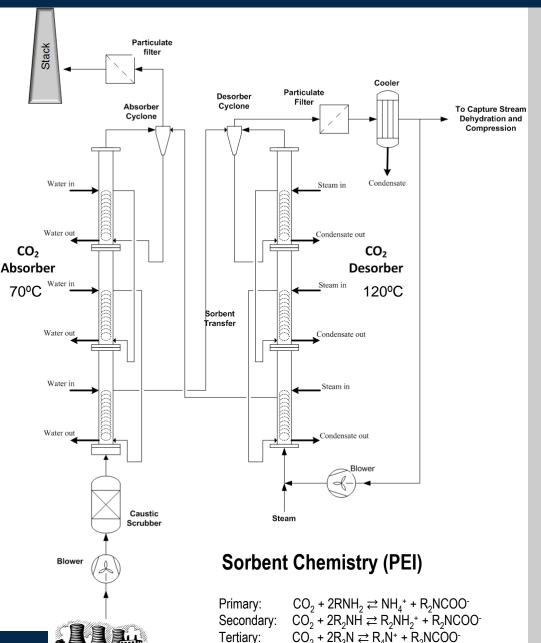
Energy Technologies at RTI International

RTI develops advanced process technologies in partnership with leaders in energy


Full alignment with industry objectives

From concept to demonstration

Defined commercialization pathways


Flexible intellectual property arrangements

Potential leveraging of industrial R&D funding with government provided funding

Solid Sorbent CO₂ Capture

Advantages

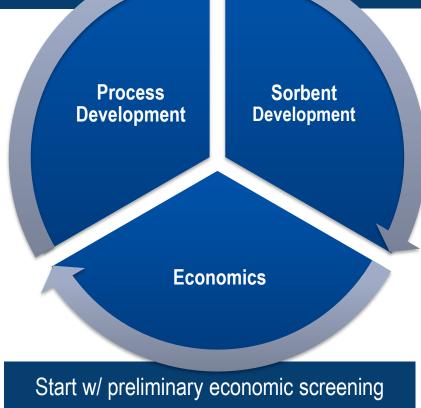
- Potential for reduced energy loads and lower capital and operating costs
- High CO₂ loading capacity; higher utilization of CO₂ capture sites
- Relatively low heat of absorption; no heat of vaporization penalty (as with aqueous amines)
- Avoidance of evaporative emissions
- Superior reactor design for optimized gas-solid heat and mass transfer and efficient operation

Challenges

- Heat management / temperature control
- Solids handling / solids circulation control
- Physically strong / attrition-resistant sorbent
- Stability of sorbent performance

Technical Approach & Scope

Start w/ process engineering analysis


 Concluded that circulating, staged, fluidized-bed design exhibits significant promise.

Development Needs:

• Optimize reactor design and process arrangement.

Development Approach:

- Detailed fluidized bed reactor modeling.
- Bench-scale evaluation of reactors designs.
- Demonstration of process concept.

Start w/ promising sorbent chemistry

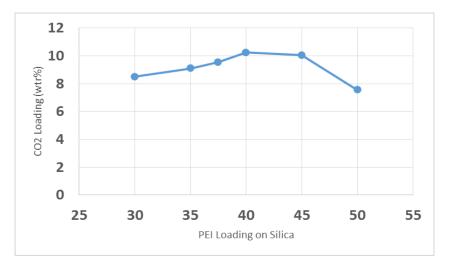
 PSU's Molecular Basket Sorbents offer high CO₂ loading; reasonable heat of absorption (66 kJ/mol).

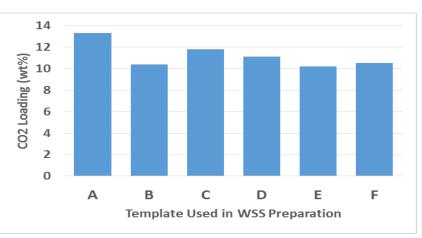
Development Needs:

- Improve thermal stability.
- Reduce leaching potential.
- Reduce production cost.
- Convert to fluidizable form.

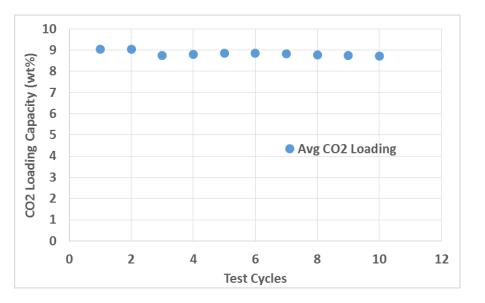
Development Approach:

- Modify support selection.
- Simplify amine tethering.
- Scalable production methods.
- Conducted detailed technical and economic evaluations
- Basis: DOE/NETL's Cost and Performance Baseline for Fossil Energy Plants
- Further reduction needed \rightarrow reduced power consumption & capital cost


Improved the thermal and performance stability and production cost of PEI-based sorbents while transitioning fixed-bed MBS materials into a fluidizable form.


PEI-impregnated Silica ("Gen1")

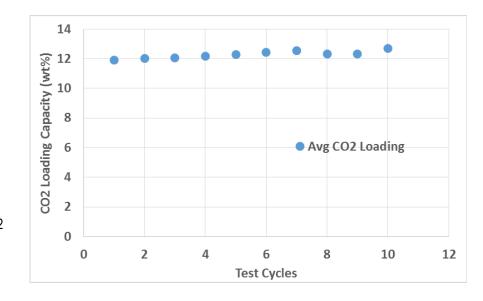
- Stability improvements through addition of moisture and PEI / support modifications.
- Suitable low-cost, commercial supports identified (1000x cost reduction).
- Converted sorbent to a fluidizable form.
- Optimized Gen I sorbent through: solvent selection; drying procedure; PEI loading %; regeneration method; support selection; etc.


Co-Precip Amine/Silica ("Gen2")

- Extremely stable sorbent, high CO₂ loadings (10 - 14 wt%).
- Key benefits: stability in liquid water, high CO₂ loadings, tailoring potential, diverse applications
- Challenges: density, physical strength, cost
- Mixed results with most promise identified in the use of blended amines and templates

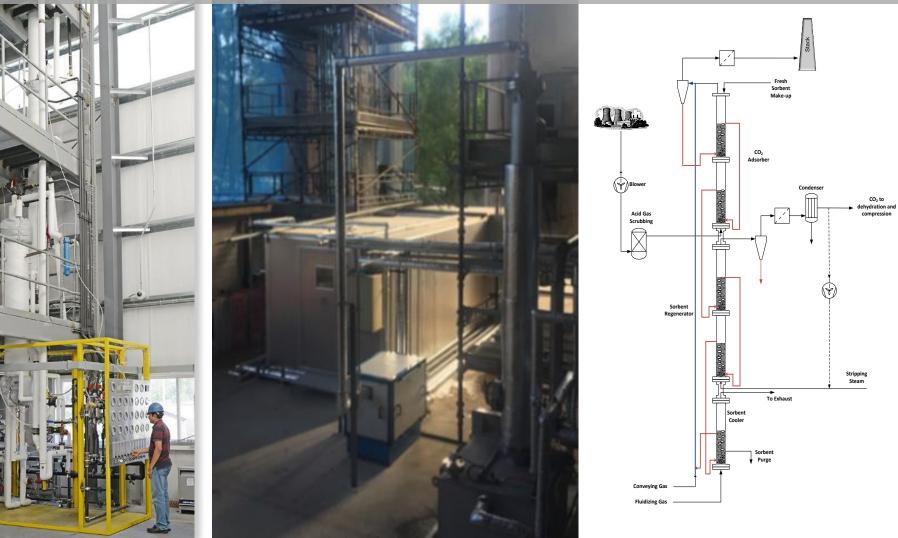
Sorbent Scale-up

Initial Scale-up (150 kg)

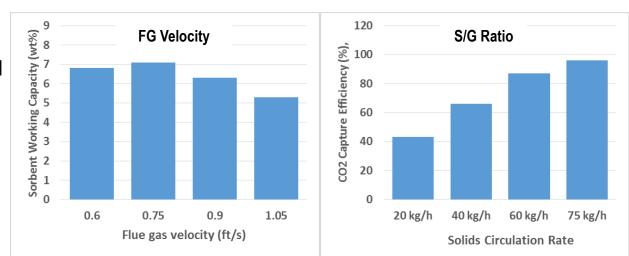

- 30 wt% PEI on commercially-available silica
- Scaled-up sorbent matches performance and properties of lab sorbent
- 6 months of bench-scale testing exhibited little to no degradation

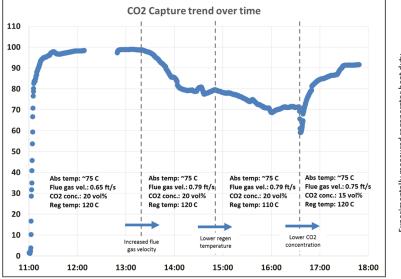
	Amount	PEI loading	CO ₂ Capacity	FBR test	PSD
Lab Sorbent	100+ g	30 %	8.5 wt%	Pass	75 – 250 um
Scaled-up Sorbent	150 kg	30 %	8.9 wt%	Pass	80 – 250 um

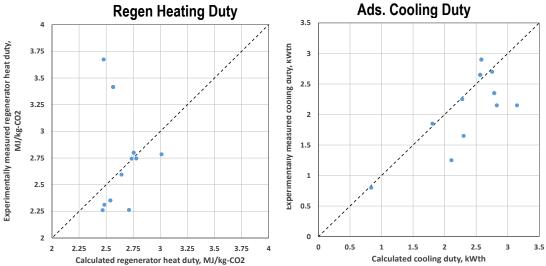
Sorbent Batch for Norcem Demonstration (100 kg)


- Improved silica selection, optimized PEI loadings
- Improved commercial preparation
- Sorbent exhibits improved CO₂ capture performance

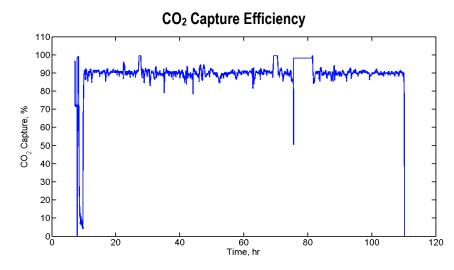
Test Equipment


RTI's Bench-scale Solid Sorbent CO₂ Capture Prototype System

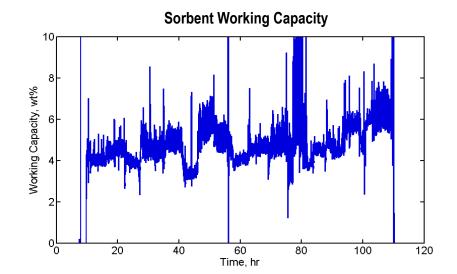

Flue gas throughput: 300 and 900 SLPM Solids circulation rate: 75 to 450 kg/h Sorbent inventory: ~75 kg of sorbent



Bench-scale Prototype Testing

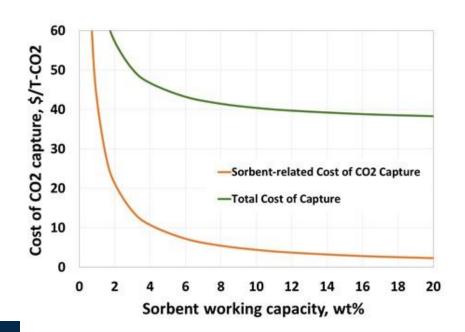

- Cumulative testing: 1,000+ circulation hours; 420+ CO₂ capture hours.
- The sorbent is capable of rapid removal of CO₂ from the simulated flue gas
- Sustained 90% capture of CO₂ in simulated flue gas stream is easily achieved
- Collected performance data, performed parametric testing, and proved reliability of bench-scale testing

Long-term Performance Testing



Other Observations / Lessons

- SO_x, NO_x, and other acid gases should be targeted for 99% removal
 - As a means of overall cost reduction, RTI may be able to use spent PEI-based sorbent, from the CO₂ capture unit, in a simple reactor environment to remove similar acid gases – essentially a replacement for the caustic scrubber.
- The need for reactor staging in both the Adsorber and the Regenerator has been confirmed through this pilot system testing
- A 2-stage Adsorber and 2-stage Regenerator approach are sufficient for good CO₂ capture performance, but a 3stage Regenerator may be required for optimal operation

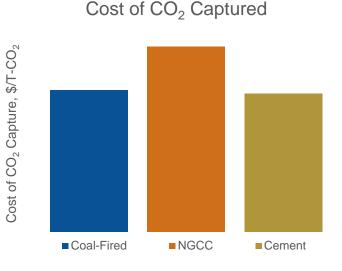

Long-term testing

- 100+ hr continuous testing, maintaining the performance target of 90% CO₂ capture by varying sorbent circulation rate
- Sorbent maintained CO₂ working capacity between 4 and 7 wt.%
- A 50% improvement in sorbent CO₂ working capacity is observed when the pilot system regeneration temperature is raised from 110°C to 120°C
- Attrition-resistance of sorbent is evident from similar PSD for used sorbent, fines collection rate, and no sorbent make-up
- Sorbent maintains excellent hydrodynamic / fluidization properties

Updated Technoeconomic Analysis for Coal-Fired Power

	Revised Assumption	Increase in cost of CO ₂ capture, \$/T-CO ₂
Sorbent cost, \$/kg	11	+ 2.7
Capture stream CO ₂ concentration, vol%	60	+ 1.0
Working capacity, wt.%	10	+ 0.6
Regeneration temperature, °C	120	+ 0.4
Acid gas scrubbing strategy	Use spent sorbent	- 1.7

Summary


- Total cost of CO₂ captured ~ \$43.3/T-CO₂
- > 25% reduction in cost of CO₂ capture, with > 40% reduction possible with advances in sorbent stability and reactor design
- ~ 40% reduction in energy penalty; significant reduction in total capture plant cost (compared to SOTA)

Cost Reduction Pathway Sorbent

- Improve CO₂ capacity
- Improve long-term stability; minimize losses
- Reduce production costs

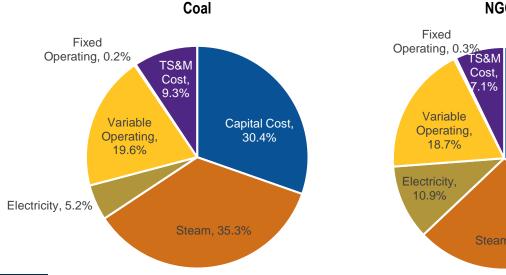
Process

- Heat recovery from absorber / compression train and integration into process
- Recycle attrited sorbent particles for removal of acid gases
- Explore lower cost MOCs and compatibility

Relative to Coal-Fired Power:

NGCC

Capital Cost,


34.6%

- NGCC plants process higher flue gas flow rates with lower CO₂ concentrations, increasing the size and cost of equipment, and blower costs
- Cement plants can utilize waste heat to reduce the steam usage, but additional heat exchangers increase the capital costs
 - Slight reduction in total cost of CO₂ capture compared to coal

Electricity, 7.4%

Fixed

Operating, 0.2%

Steam, 30.5%

Capital Cost,

32.2%

TS&M

Cost,

9.6%

Variable

Operating,

20.2%

Acknowledgements

Funding provided by:

- Gassnova
- Heidelburg Cement Norcem
- The U.S. DOE/National Energy Technology Laboratory (Cooperative Agreement DE-FE0007707)
- Masdar (Abu Dhabi Future Energy Company)

Contact

Dr. Paul Mobley Energy Technology Division RTI International pdmobley@rti.org +1.919.541.6918