Investigating the influence of mineral dissolution and precipitation on oxygen isotope ratio (δ¹⁸O) of CO₂-rich groundwater in Daylesford, South East Australia

Ruta Karolyte¹, Gareth Johnson¹, Stuart M. V. Gilfillan¹, Sascha Serno¹

¹ School of GeoSciences, The University of Edinburgh, Grant Institute, The King’s Buildings, West Mains Road, Edinburgh, EH9 3JW, UK

Abstract

The ability to identify water interaction with CO₂ is critical for CCS (Carbon Capture and Storage) site monitoring. The isotopic composition of the injected CO₂ provides a tracer for gas migration in the subsurface and interaction with water. The occurrence of CO₂-rich springs in Daylesford, southeast Australia, presents an opportunity to study the potential effects of CO₂ on groundwater, as an analogue to an unlikely event of CO₂ migration out of a storage reservoir.

The water-CO₂ oxygen equilibration relationship can be used as a monitoring tool for CO₂ migration. It has been successfully used in CO₂-EOR (enhanced oil recovery) (Johnson et al., 2011) and pilot CO₂ storage sites (Kharaka et al. 2006; Gilfillan et al., 2016) to monitor the movement of injected CO₂ plume; and confirmed in laboratory experiments (Johnson & Mayer 2011, Becker et al., 2015). Similarly, changes in the oxygen isotope ratio (δ¹⁸O) in natural shallow aquifers where CO₂ is migrating to groundwater from depth has been observed, for example in CO₂ springs in Italy (Cinti et al. 2011), Spain (Cerón et al., 1998), Portugal (Marques et al., 2000) France (Pauwels et al., 2007) and South Africa (Harris et al., 1997). Here we investigate how CO₂ influences the oxygen isotope ratio (δ¹⁸O) of groundwater in Daylesford.

Mineral springs in Daylesford have high Ca²⁺, Mg²⁺, Na⁺ and bicarbonate contents. Numerous faults dissecting the area likely facilitate the upwelling of deep seated CO₂-rich fluids that mix with the shallow water. Spring water is distinctively depleted in ¹⁸O, in contrast with the local precipitation water (Figure 1).
Figure 1. Oxygen versus hydrogen isotope ratio in spring and surface waters from Daylesford mineral springs (Modified from Cartwright et al., 2002). Mineral springs are 18O depleted relative to the LMWL and GMWL (local and global meteoric water line, respectively).

CO$_2$ presence in the system can lead to 18O depletion in water by either:

i) Promoting low-temperature primary mineral dissolution and secondary mineral precipitation reactions preferentially consuming 18O.

ii) CO$_2$-water equilibrium oxygen isotope exchange.

Under equilibrium conditions, secondary minerals such as kaolinite preferentially incorporate more 18O during precipitation and hence leave the remaining water 18O-depleted, if reaction rates are sufficient (Kloppmann et al. 2002). Mineral dissolution and precipitation reactions were simulated using geochemical modelling software PHREEQC (Parkhurst & Appelo 1999) and the geochemical dataset from the mineral springs published in Cartwright et al. (2002) to test if dissolution of anorthite, albite and forsterite and precipitation of clay minerals could explain the observed water 18O depletion.

Geochemical reaction simulations demonstrate that the fraction of oxygen involved in silicate dissolution and clay precipitation represents only up to 0.01% of total oxygen in the system. The model eliminates the possibility of mineral reaction influencing the water δ^{18}O. This provides evidence that oxygen isotope equilibrium exchange governs water δ^{18}O. Consequently, our study confirms similar findings of an observed water-CO$_2$ oxygen equilibration relationship in CO$_2$-EOR and CO$_2$ storage sites, in laboratory experiments and in other natural CO$_2$ springs all around the world, and therefore demonstrates the feasibility of using oxygen isotopes to trace CO$_2$ migration in the shallow subsurface. Currently, further work is being pursued to investigate this relationship. Samples of water and CO$_2$ have been collected for oxygen isotope analysis to test if the two phases are in equilibrium.
References

