

## Effect of number concentration of aerosol in flue gas upstream of the absorber on mist based emissions from a PCC plant

TOSHIBA Corporation

Koshito Fujita, Yasuhiro Kato, Tetsuya Kaseda, Satoshi Saito, Hideo Kitamura, Mitsuru Udatsu, Daigo Muraoka, Yusuke Handa

Birmingham, Alabama, 7<sup>th</sup> Sept. 2017

© 2017 Toshiba Corporation

- Background of the Project
- Experimental
- Results and Discussions
  - Investigate the ratio of mist based amine emissions
  - What substances affect on mist based amine emissions  $CO_2$ , aerosol, and  $SO_3$
- Researching countermeasures against mist
- Schedule of CO<sub>2</sub> Capture Demonstration Plant (>500t/d)
- Summary



- Background of the Project
- Experimental
- Results and Discussions
  - -Investigate the ratio of mist based amine emissions
  - What substances affect on mist based amine emissions  $CO_2$ , aerosol, and  $SO_3$
- Researching countermeasures against mist
- Schedule of CO<sub>2</sub> Capture Demonstration Plant (>500t/d)
- Summary



#### MoE "Sustainable CCS Project" Outline



#### **Toshiba PCC Pilot Plant at Mikawa**



Mikawa: Toshiba's Showcase of Low Emission Thermal Power Technology



### **Amine emissions test Outline**



**TOSHIBA** Leading Innovation >>>

- Background of the Project
- Experimental
- Results and Discussions
  - -Investigate the ratio of mist based amine emissions
  - What substances affect mist based amine emissions  $CO_2$ , aerosol, and  $SO_3$
- Researching countermeasures against mist
- Schedule of CO<sub>2</sub> Capture Demonstration Plant (>500t/d)
- Summary



#### **Measurement; Amine concentrations**



#### Measurement; Amine mist, Aerosol, and SO<sub>3</sub>





TOSHIBA

Leading Innovation >>>

9

- Background of the Project
- Experimental
- Results and Discussions
  - Investigate the ratio of mist based amine emissions
  - What substances affect mist based amine emissions  $CO_2$ , aerosol, and  $SO_3$
- Researching countermeasures against mist
- Schedule of CO<sub>2</sub> Capture Demonstration Plant (>500t/d)
- Summary



#### **Mist particle distribution**



#### Number Concentration of mist at sampling point: B



#### The net amount of Amine weight in Mist particle



The net amount of Amine weight depending on mist particle size



A large part of mist based emissions is emitted by TS-1; several micro diameter MEA; over 10 micro diameter



#### Ratio of mist based amine emissions

Compared between "total concentration (Vapor + Mist)" and "Mist" to investigate the ratio of mist based amine emissions



#### The ratio of mist based amine emissions

- Mist based amine emissions of MEA occupy over 50%.
- The ratio of T<sup>®</sup> tended to be more than 90%.
- the ratio of mist based amine emissions depends on amine properties such as amine vapor pressure.

- Background of the Project
- Experimental
- Results and Discussions
  - -Investigate the ratio of mist based amine emissions
  - What substances affect mist based amine emissions  $CO_2$ , aerosol, and  $SO_3$
- Researching countermeasures against mist
- Schedule of CO<sub>2</sub> Capture Demonstration Plant (>500t/d)
- Summary



#### How CO<sub>2</sub> affects (mist based) amine emissions?

#### $\langle\!\langle Air + CO_2 \rangle\!\rangle$



Conducted emissions test with artificial flue gas, to evaluate the effect of  $CO_2$  and other impurities contained in actual flue gas





- •CO<sub>2</sub> is less likely to contribute amine emissions.
- It was also confirmed that the ratio of mist based emission decreased in artificial flue gas test compared to actual flue gas test

#### How aerosol affects mist based amine emissions?

On-line Measuring for aerosol, amine mist, and amine concentration was simultaneously measured to evaluate the role of aerosol for mist formation



Remarkable increase in the number concentration of the amine mist at the sampling point B was observed depending on the increase of aerosol number concentration. In addition, amine concentration was simultaneously increased.
Amine concentration was likely to be fluctuated by a variation of aerosol.

#### Role of aerosol for amine mist formation

To clarify the relation between aerosol in the flue gas and amine mist at sampling point B&C, comparison results of both number concentration are confirmed in the following.



The number of aerosol at the inlet of the absorber matched the number of amine mist at the outlet of the absorber, regardless of size difference.
The aerosol acts as a source of amine mist nuclei and enhances amine mist growth in the CO<sub>2</sub> absorber. In addition, it seems to be difficult for common washing systems to capture the mist derived from TS-1.

#### How SO<sub>3</sub> affects (mist based) amine emissions?

Studied the effect of SO<sub>3</sub> for amine emissions by switching FGD service



When the additional FGD was out of service,  $SO_3$  concentration raised to 1.2ppm; however, clear trends were not observed in terms of amine concentration.



- Background of the Project
- Experimental
- Results and Discussions
  - -Investigate the ratio of mist based amine emissions
  - What substances affect mist based amine emissions  $CO_2$ , aerosol, and  $SO_3$
- Researching countermeasures against mist
- Schedule of CO<sub>2</sub> Capture Demonstration Plant (>500t/d)
- Summary



#### **Researching countermeasures against mist**

have researched effective countermeasures to mitigate amine emissions, especially against mist of amine using bench-scale plant, shown as follows.

#### **Bench-scale** plant



#### <u>research</u>

- Demister
- Gas velocity
- Novel washing methods
- Washing process
- Washing configuration

Novel washing methods have been evaluated and revealed that washing efficiency is over 99%. That methods will be utilized for demonstration plant.



#### **Schedule of CO2 Capture Demonstration Plant**

## Demonstration plant will be designed and built to capture more than 500 t-CO<sub>2</sub>/day

|                               | FY2             | 016                     | FY                 | 2017                        | FY2                   | 2018                   | FY2            | 019            | FY2            | 020              |
|-------------------------------|-----------------|-------------------------|--------------------|-----------------------------|-----------------------|------------------------|----------------|----------------|----------------|------------------|
| CO <sub>2</sub> Capture Plant | Detail<br>Captu | ed Desigr<br>re Plant   | of [<br>F          | Design of Ex<br>Power Plant | isting<br>Modificat   | ion                    |                |                |                |                  |
| Construction & Demonstration  | Permi<br>Land   | tting & Se<br>for Const | ecuring<br>ruction | Der<br>& I                  | no Plant<br>ntegratio | Construct<br>n to Powe | ion<br>r Plant | Plant<br>& Der | Comm<br>nonstr | issioni<br>ation |

## Planned Location of the CO<sub>2</sub> Capture Demo Plant



#### Planned Layout of CO<sub>2</sub> Capture Demo Plant





- Background of the Project
- Experimental
- Results and Discussions
  - -Investigate the ratio of mist based amine emissions
  - What substances affect mist based amine emissions  $CO_2$ , aerosol, and  $SO_3$
- Researching countermeasures against mist
- Schedule of CO<sub>2</sub> Capture Demonstration Plant (>500t/d)
- Summary



#### Summary

- investigated the ratio of mist based amine emissions in total amine concentration.
  - •MEA; mist accounts for over 50%
  - •TS-1; mist of "T6" accounts for near 100%, mist of "T2" accounts for 50%

# Conducted a comparison test using actual flue gas, air and artificial flue gas(air + industrial CO<sub>2</sub>).

• the aerosol acts as a source of amine mist nuclei and enhances amine mist growth in the  $CO_2$  absorber. On the other hand,  $CO_2$  is less likely to contribute amine emissions.

Investigated the effect of additional FGD by switching IN/OUT servicing.
 •when FGD was OUT servicing, SO<sub>3</sub> concentration raised to 1.2ppm.
 In this concentration, however, it was not clear how much SO<sub>3</sub> contributes amine emissions.

Demonstration plants to capture more than 500t-CO<sub>2</sub>/day will be constructed by 2020 and be evaluated emission mitigation methods. Acknowledgements

This work was carried out as part of the project funded by Ministry of the Environment, Government of Japan.

# **TOSHIBA** Leading Innovation >>>

#### **Measurement; Amine concentrations**

#### Detected chemical species at sampling point: B at 400h operation of MEA test

| Ļ                        | Chemical substance                | Abbreviation | CAS No.    | Amine concentration<br>at the outlet of<br>absorber (ppb) |  |
|--------------------------|-----------------------------------|--------------|------------|-----------------------------------------------------------|--|
| Washing<br>B<br>Absorber | Monoethanolamine                  | MEA          | 141-35-5   | 52000                                                     |  |
|                          | Diethanolamine                    | DEA          | 111-42-2   | 3                                                         |  |
|                          | N-(2-hydroxyethyl)formamide       | HEF          | 693-06-1   | 15                                                        |  |
|                          | N-Nitrosodiethanolamine           | NDELA        | 1116-54-7  | N.D.(<0.4)                                                |  |
|                          | Pyrazine                          | PY           | 290-37-9   | N.D.(<5)                                                  |  |
|                          | Methylpyrazine                    | MePY         | 109-08-0   | N.D.(<0.1)                                                |  |
|                          | N-(2-hydroxyethyl)imidazole       | HEI          | 1615-14-1  | 2                                                         |  |
|                          | 2-Oxazolidinone                   | OZD          | 497-25-6   | N.D.(<6)                                                  |  |
|                          | N-(2-hydroxyethyl)acetamide       | HEA          | 142-26-7   | 2                                                         |  |
|                          | N-(2-hydroxyethyl)lactamide       | HELA         | 5422-34-4  | N.D.(<0.1)                                                |  |
|                          | N-(2-hydroxyethyl)glycine         | HEGly        | 5835-28-9  | 5                                                         |  |
|                          | 1-hydroxyethl-2-piperainone       | HEPO         | 23936-04-1 | N.D.(<0.4)                                                |  |
|                          | N-(2-hydroxyethyl)imidazolidinone | HEIA         | 3699-54-5  | N.D.(<0.03)                                               |  |

### Amine mass concentration in Mist particle



#### Amine concentration in mist standardized by concentration in absorbent



The lager mist become, the less amine concentration in mist was regardless of amine kinds; however, the ratio of concentration against absorbent is different depending on amine kinds.

#### How CO<sub>2</sub> affects (mist based) amine emissions?

**TS-1** 

#### 《Air + CO2》



Conducted emissions test with artificial flue gas, to evaluate the effect of  $CO_2$  and other impurities contained in actual flue gas





CO<sub>2</sub> contained in actual flue gas is less likely to contribute amine emissions. We also confirmed that the ratio of mist based emission decreased in artificial flue gas test compared to actual flue gas test. (On the other hand, vapor based emission is not decreased)

#### **TOSHIBA** Leading Innovation >>>



\*Vapor pressure ;measuring vapor pressure of amine from 1wt% aqueous solution at 40°C, respectively

The higher vapor pressure is, the higher washing efficiency becomes by washing column, on the other hand, the less mist ratio of total emissions is.













Amine concentration in mist were not changed through washing



**TOSHIBA** Leading Innovation >>>