Engineering-scale testing of non-aqueous solvent for CO₂ capture at Technology Centre Mongstad

Vijay Gupta, Paul Mobley, Jak Tanthana, Marty Lail*, Jacob Nelson, Katy Jessop, Lucas Cody, Daniel Mogollon, Abigael Nachtsheim**

www.rti.org RTI International is a trade name of Research Triangle Institute. RTI and the RTI logo are U.S. registered trademarks of Research Triangle Institute.

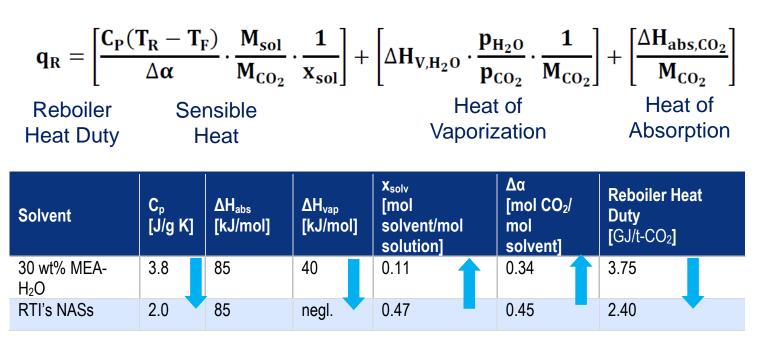
Project Summary

Description: Testing and evaluation of transformational non-aqueous solvent (NAS)-based CO_2 capture technology at engineering scale at TCM **Key Metrics**

- Solvent performance including capture rate, energy requirements, solvent losses
- Solvent degradation, corrosion, emissions
- Technoeconomic and EHS evaluation

Specific Challenges

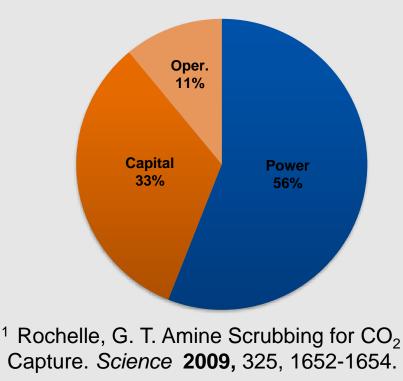
- Resolve remaining technical and process risks
- Operate TCM plant within emission requirements
- Minimize rise in absorber temperature
- Maximize NAS performance with existing hardware limitations


Timeframe: 8/8/18 to 06/30/23

Total Funding: \$17,384,512

R&D Strategic Approach

Breakdown of the Thermal Regeneration Energy Load



For NAS, heat of vaporization of water becomes a negligible term to the heat duty

Sensible heat term is decreased due to lower heat capacity, higher loadings, and higher amine concentration relative to baseline

Path to Reducing ICOE and Cost of CO₂ Avoided

- Primarily focus on reducing energy consumption – reboiler duty
- Reduce capital expenditure
 - Simplify process arrangement
 - Materials of construction
- Limit operating cost increase

Technology Overview – NAS Technology Development Path

Lab-Scale Development & Evaluation (2010-2013)

Solvent screening and lab-scale evaluation

0.0015 t-CO₂/day

TRL 1-2

Large Bench-Scale System (RTI facility) (2014-2016)

Demonstration of key process features (≤ 2.3 GJ/t CO₂) at bench scale

0.11 t-CO₂/day

TRL 2-3

Pilot Testing at Tiller Plant Norway,

(2015-2018)

Demonstration of all process components at pilot scale

1.0 t-CO₂/day

TRL 3-5

(2018)

emission, corrosion

characterizations

under real flue gas

 $1.0 \text{ t-CO}_2/\text{day}$

TRL 3-55

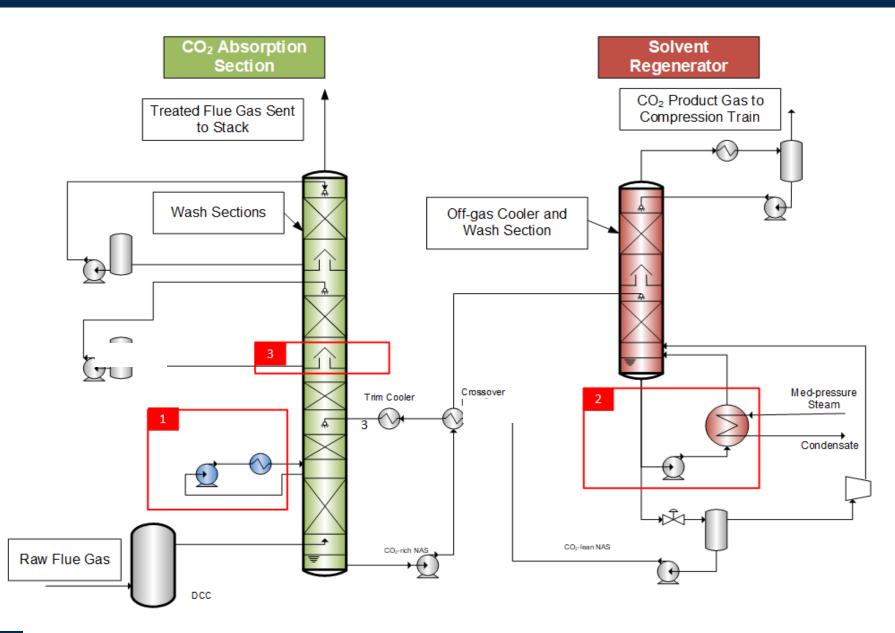
Degradation,

(2018-2021)

Effective emissions mitigation strategy for water-lean solvents

1.1 t-CO₂/day

TRL 2-3

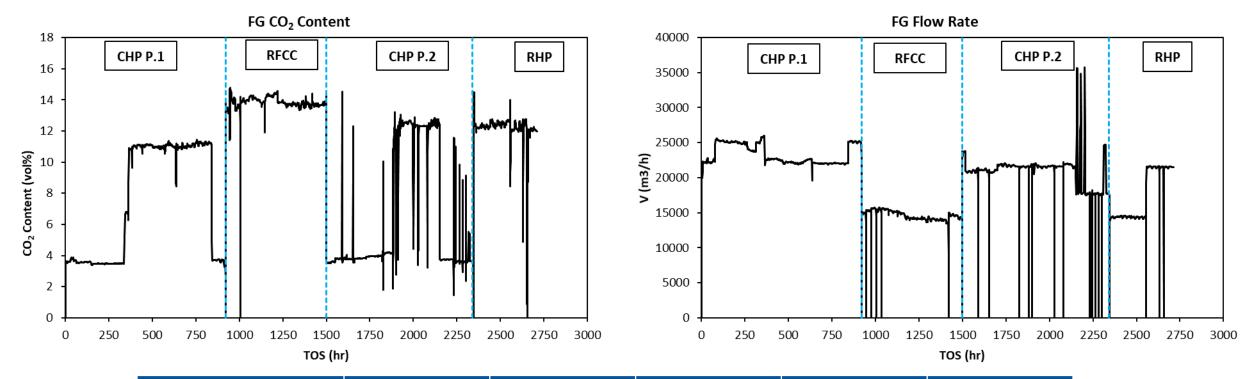

Engineering-Scale Validation, TCM, Norway (2018-2023)

Pre-commercial demonstration at TCM, Norway (~12 MWe)

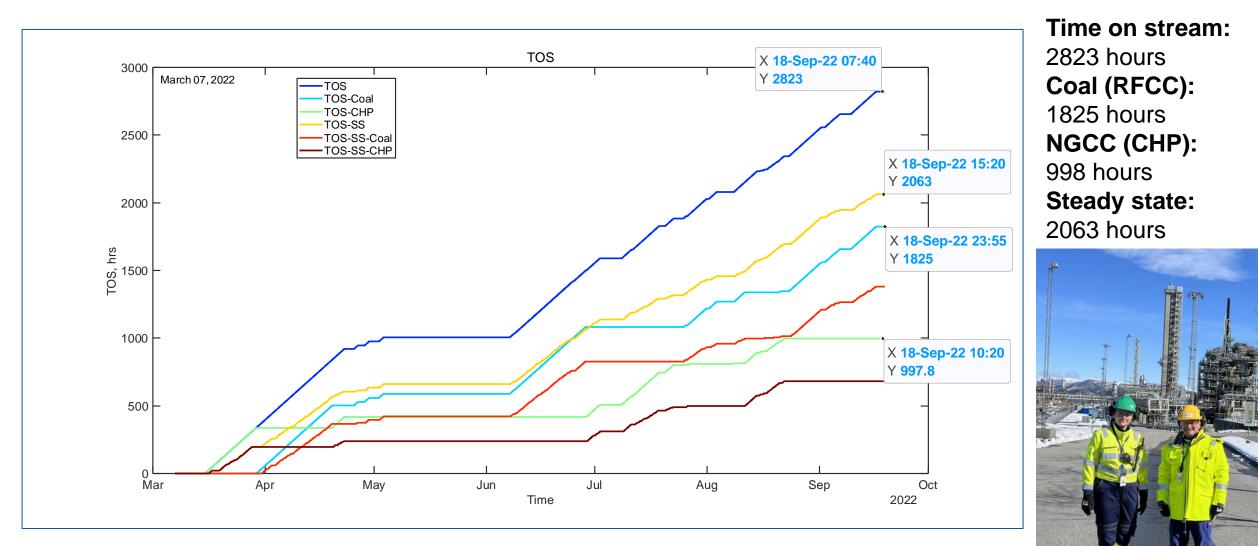
220 t-CO₂/day

TRL 5-6

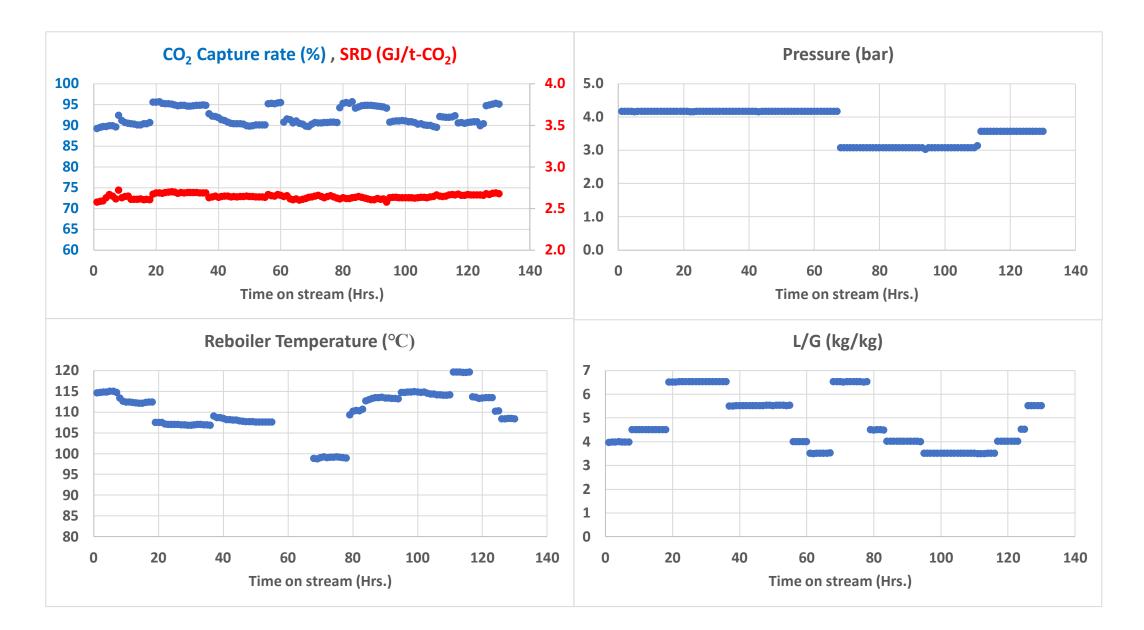
TCM Amine Plant Modifications



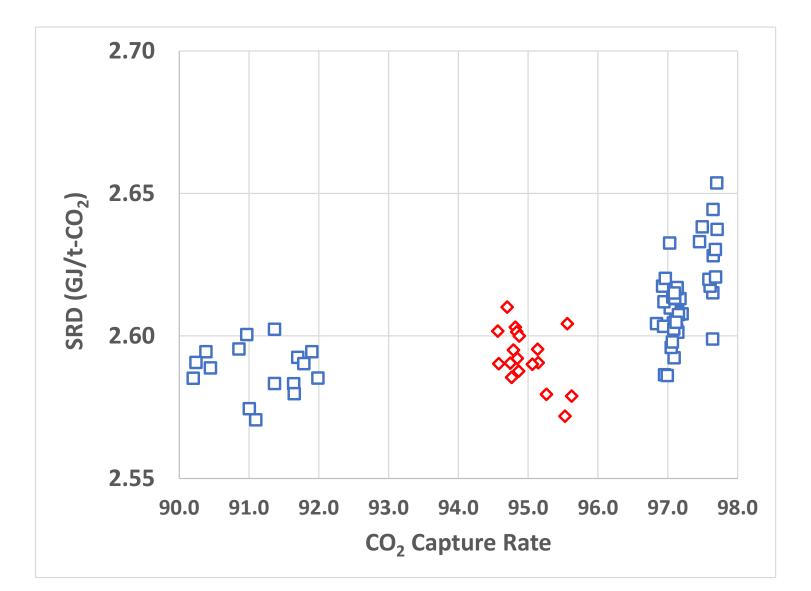
Modifications:


- 1. Addition of absorber interstage cooler.
- 2. Forced recirculation pump
- 3. Chimney tray tightening to reduce leakage of water from lower water wash to absorber for water control.

Test Campaign Segments and Flue Gas Characteristics

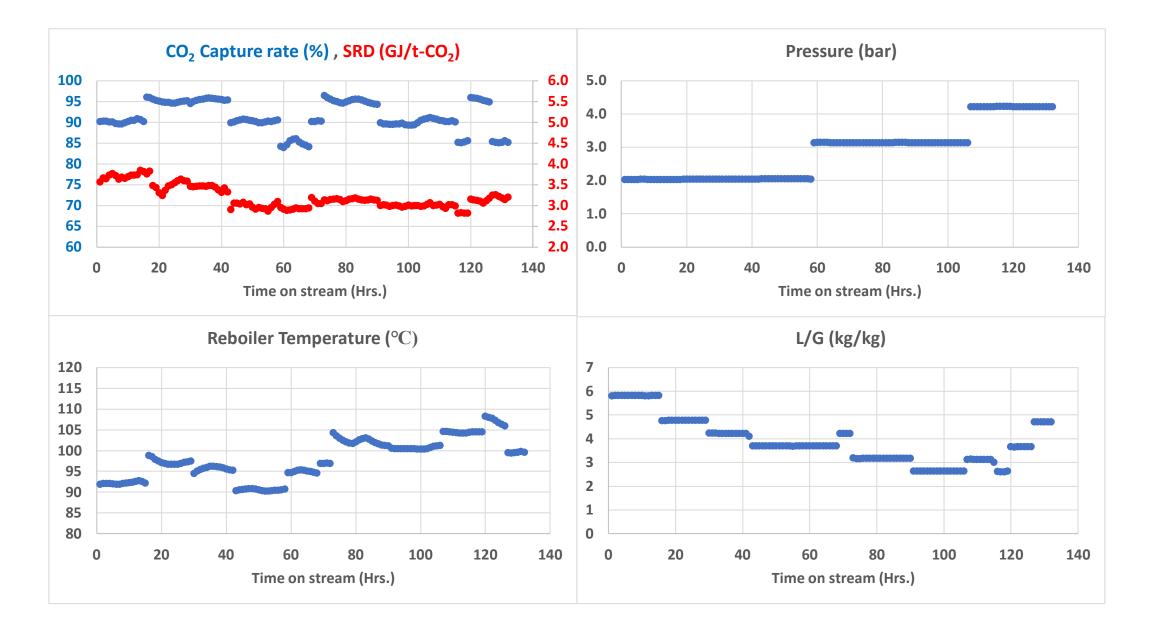

Flue Gas	CO ₂ (vol %)	O ₂ (vol%)	NO ₂ (ppm)	NO (ppm)	SO ₂ (ppm)
СНР	3.9	12.9	3.2	23.9	1.0
RFCC	14.7	2.4	1.2	66.5	0.0
CHP w/ Recycle (RFCC Mimic)	12.6	6.1	3.0	45.4	0.8
RHP (aka MHP)	13.7	4.6	4.6	50.9	0.4
RHP w/ Recycle (Cement Mimic)	18.0	4.6	5.0	3.4	0.0

Time on Stream Highlights

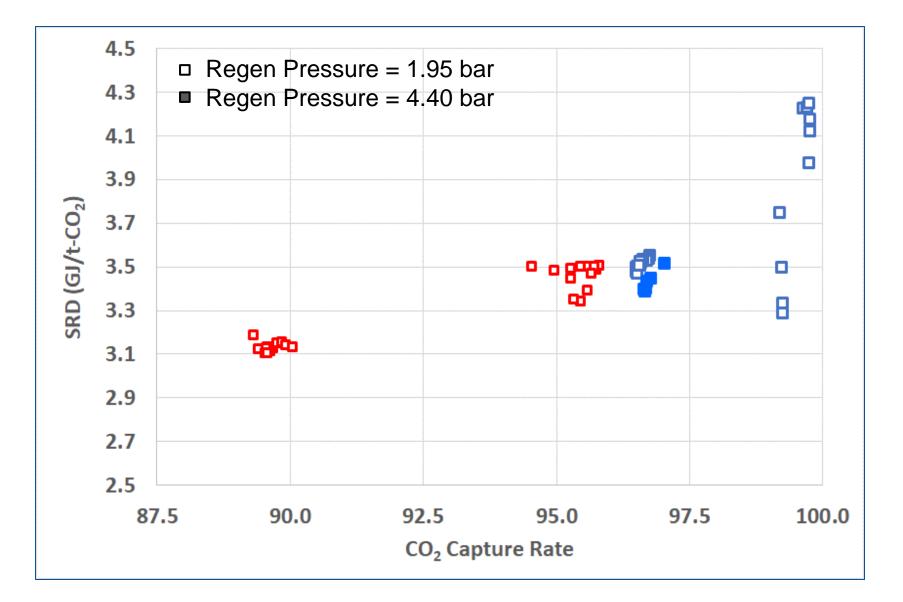


7

Performance at coal flue gas conditions

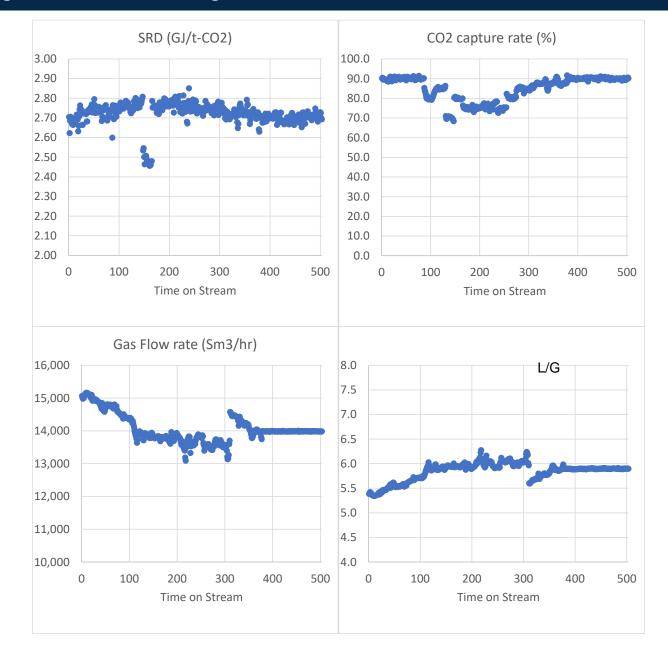


Coal High Capture Rates

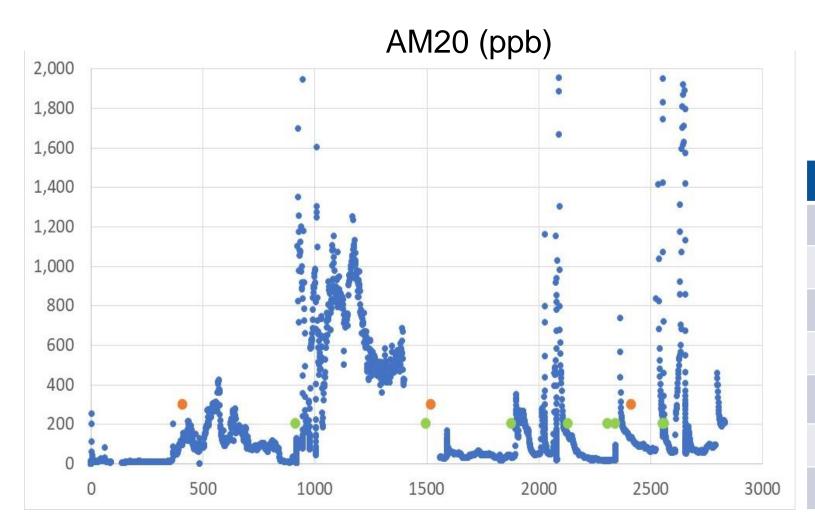


- Regenerator Pressure at 4.2 bar
- Reboiler Temperature 106 – 114 °C.
- CO₂ concentration in flue gas at 13.5%

Performance at NGCC Flue Gas conditions

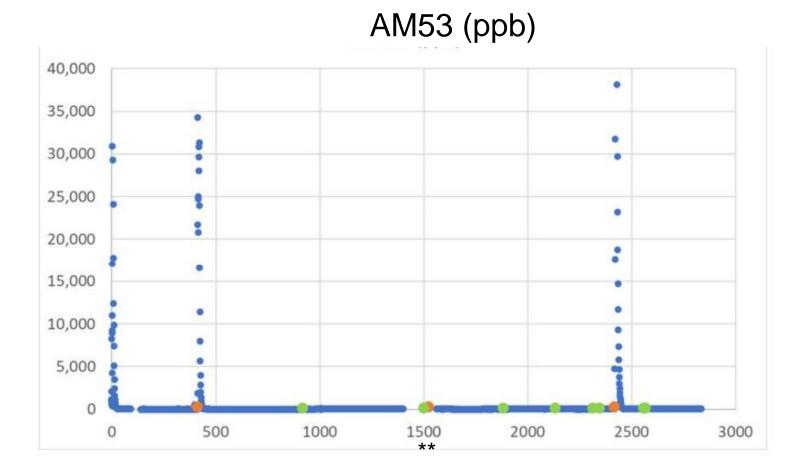


NGCC conditions - High Capture Rates



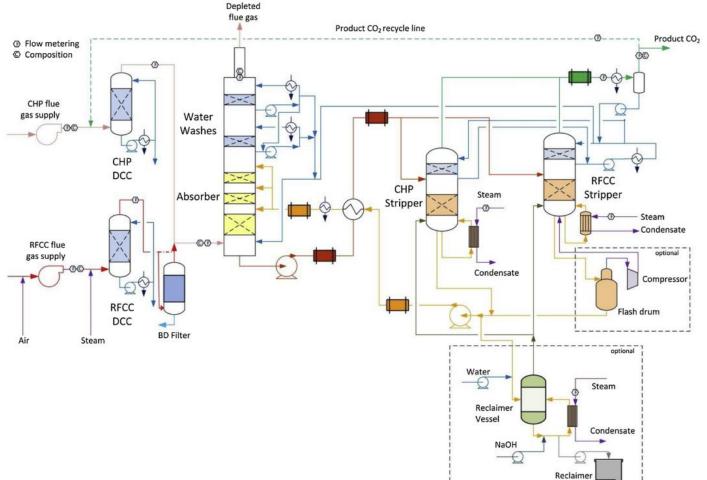
- Regenerator Pressure at 1.95 – 4.41 bar.
- Reboiler Temperature 88.4 – 113.5 °C.
- CO₂ concentration in flue gas at 4%

Long term testing at coal flue gas conditions


Emission measurements by TCM/UiO using PTR-TOF-MS

TOS (h)	Event (Green dots)
916	CHP ended, RFCC began
1499	RFCC ended, NGCC sDOE on CHP began
1881	NGCC sDOE ended, Coal sDOE began
2131	Coal sDOE ended, dynamic testing began
2331	Dynamic testing ended, deep capture NGCC began
2343	Deep capture NGCC ended, EF test began
2555	EF test ended, RHP test began

Emission measurements by TCM/UiO using PTR-TOF-MS



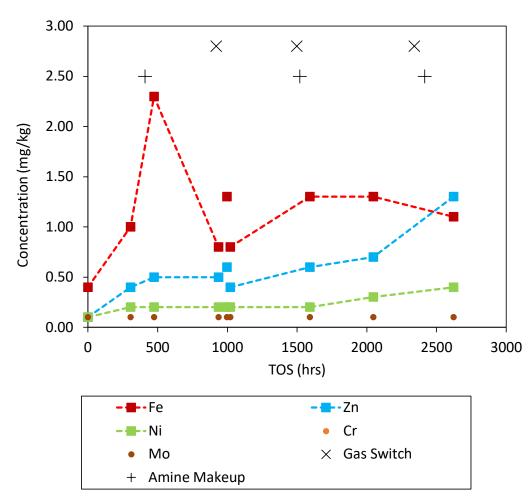
TOS (h)	Event (Orange dots)
409	Addition of fresh amine
1520	Addition of fresh amine
2414	Addition of fresh amine

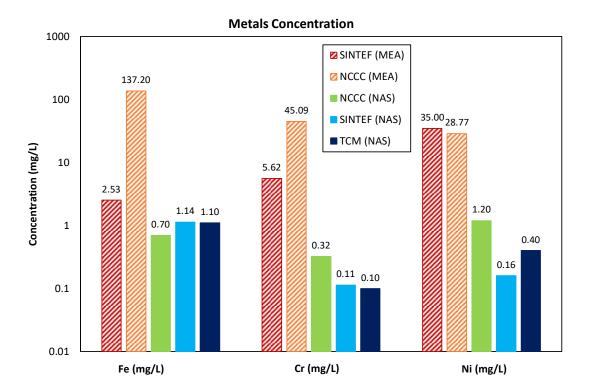
** PTR-TOF-MS was down at this time.

 Trace emissions from solvent production may be present at start-up unless steps are taken during manufacturing to remove them.

Corrosion Testing

Waste




Rating	Corrosion Rate (μm/yr)
Outstanding	<25
Excellent	25-100
Good	100-500
Fair	500-1000
Poor	1000-5000
Unacceptable	>5000

		Cold Lean (8" Line)	Cold Rich (6" Line)	Hot Lean (8" Line)	Hot Rich (6" Line)	Stripper Overhead (12" Line)
	CS 1010	-0.03 ± 0.06	-0.07 ± 0.08	383.02 ± 46.83	Lost	-0.51 ± 0.07
Carbon Steels	CS 1018	-0.01 ± 0.14	0.01 ± 0.21	376.00 ± 10.84	956.22 ± 33.07	-0.27 ± 0.14
	SA 516	0.18 ± 0.14	0.06 ± 0.21	343.21 ± 9.90	1167.12 ± 40.36	-0.37 ± 0.14
	SA 516 Bent	0.12 ± 0.07	-0.08 ± 0.08	414.97 ± 64.57	Lost	-0.09 ± 0.04
Stainless Steels	Duplex 2205	-0.18 ± 0.14	-0.21 ± 0.21	-0.12 ± 0.14	-0.10 ± 0.21	-0.08 ± 0.14
	Duplex 2205 Bent	-0.07 ± 0.06	-0.07 ± 0.08	-0.03 ± 0.06	-0.06 ± 0.08	0.00 ± 0.04
	SS 304	-0.02 ± 0.14	-0.01 ± 0.20	0.00 ± 0.14	0.03 ± 0.20	0.00 ± 0.14
	SS 304 Bent	-0.04 ± 0.06	-0.03 ± 0.08	-0.02 ± 0.06	-0.01 ± 0.08	-0.02 ± 0.04
	SS 316	-0.03 ± 0.14	-0.01 ± 0.20	0.00 ± 0.14	0.02 ± 0.20	0.00 ± 0.14
Resin	Ultem Resin	-33.24 ± 5.73	20.85 ± 4.30	Lost	Lost	22.37 ± 3.89

Build-up of Metal lons in the Solvent

TCM Metals Concentration v. TOS

Solvent Campaign	TOS
SINTEF (MEA)	887
NCCC (MEA)	1000
NCCC (NAS)	511
SINTEF (NAS)	538
TCM (NAS)	2500

Comparison of Cost and Performance against DOE Baseline Reference Cases

	DOE B12B.95	RTI B12B.95	DOE B31B.95	RTI B31B.95
Description	SCPC	SCPC	NGCC Class-F	NGCC Class-F
Solvent	Cansolv	RTI-NAS	Cansolv	RTI-NAS
SRD (GJ/t-CO ₂)	2.50	2.55	2.70	3.10
Regenerator pressure (bar)	1.7	4.4	1.7	4.4
Coal flow rate (kg/hr)	276,574	271,356		
Natural gas flow rate (kg/hr)			93,272	93,272
Gross power output (MWe)	763	756	689	689
Aux. power req. (MWe)	113	108	49	48
Net power output (MWe)	650	648	640	641
Net plant HHV efficiency (%)	68.7	69.8	47.3	47.3
Power plant cost (\$MM)	1643	1648	611	546
CO ₂ capture cost (\$MM)	549	363	432	410
CO ₂ compression cost (\$MM)	94	81	63	44
TPC (\$MM)	2285	2092	1106	1001
TOC (\$MM)	2802	2567	1344	1246
TASC(\$MM)	3235	2963	1469	1362
Total OPEX (\$MM)	256	247	208	202
COE, excl CO ₂ TS&M, mills/kWh	100.1	94.6	65.4	62.5
Cost of CO ₂ Capture, (\$/t-CO2)	37.3	30.5	59.9	52.0

RESEARCH INSTITUTE

Independent TEA by Nexant and EPRI.

Design Basis as per DOE Baseline report**

- NOAK plant with single train.
- CWS at 60 °F (15.6 °C)
- CWR at 80 °F (26.7 °C)

^r Bituminous Coal And Natural Gas To Electricity, Rev 4a Baseline Report (DOE/NETL - 2023/4320)

All costs are on 2018 US\$ basis

Continuation of the Technology Development Path

(2021-2024)

Process intensification to enable flexible capture, reduce capital expense

100 t-CO₂/day

TRL 3-5

Large Pilot Testing for Cement Flue Gas

(2021-2024)

Process intensified absorbers to reduce capital expense from cement flue gas capture

1.0 t-CO₂/day

TRL 4-5

(2023-2024)

Improved Solvent chemistry with process intensification for higher capture rates at lower cost.

TRL 2-3

0.1 t-CO₂/day

(2023-2024)

Carbon capture plant FEED study for cement manufacturing

4000 -CO₂/day

TRL 6

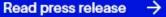
News Rele

Schlumberger and RTI International Partner to Accelerate the Industrialization of Innovative Carbon Capture Technology

Published: 10/17/2022

Commercialization with SLB

News Release


Schlumberger and RTI International Partner to Accelerate the Industrialization of Innovative Carbon Capture Technology

Published: 10/17/2022

A unique, versatile nonaqueous solvent

SLB and RTI International have partnered to industrialize and scale up an absorption-based carbon capture technology. The proprietary nonaqueous solvent (NAS) can be applied across a broad range of industrial sectors—from cement and steel manufacturing, coal and gas power generation, chemicals, and hydrogen.

With low energy consumption, simple process configuration, low corrosion chemistry, and fast reaction rates, NAS technology reduces energy consumption by up to 40% during CO₂ capture and minimizes both capex and opex compared with traditional solvents.

trett-th

SLB exclusive licensor of the RTI NAS technology

Summary

- Performed >2,800 hours testing of NAS at coal and NGCC flue gas conditions.
- Demonstrated NAS operations at TCM below emission limits.
- Achieved SRD of 2.6 GJ/t-CO₂ captured at coal flue gas conditions with sub-optimal TCM absorber configuration (had only one intercooler).
- Demonstrated NAS with CO₂ regeneration at 4.4 bar with minimal increase in SRD.
- Demonstrated high efficiency CO₂ capture from NGCC with NAS, though at higher SRD and cost.
- Observed low corrosion rates on carbon steel at absorber conditions.
- Found PTR-TOF-MS to be an effective tool for quickly identifying volatiles and monitoring at low levels of emission.

Acknowledgements

Mariah Young Andrew Jones Dan Hancu Lynn Brickett John Lytynski Maureen Davison Jose Figueroa Matthew Campbell Anette Knarvik Gerard Lombardo Kjetil Hantveit Blair McMaster Ismail Shah Audun Drageset Freddy Garcia

Thor Mejdell Andrew Tobiesen Kai Vernstad

SINTEF

TEXAS

Gary Rochelle Fred Closmann Chih-I Chen

Abhoyjit Bhown Tianyu Gao

► NexantECA

Alexander Zoelle

Nicholas Knez

Babul Patel

Gabrielle Farrell

Rudolf H. Krondorfer Tore Andreas Danielsen Jan Tore Rein

Josh Morgan Ben Omdell Michael Matuszewski

DE-FE0031590

Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

This report was prepared as an account of work sponsored by an agency of the United States Government.

Thank you

Contact: Vijay Gupta email: vgupta@rti.org