Cyclic Oxidation of Piperazine

Paul Nielsen September 6, 2017

Amine Oxidation

- Free radical reaction with O₂ catalyzed by dissolved metals [1]
 - PZ: stable at absorber conditions, oxidizes in cyclic systems [2]
- Most significant cause of amine solvent loss in pilot plants [3]
 Increases solvent make-up cost (~\$1-3/MT CO₂) [4]
 - Degradation product accumulation
 - Heat stable salt (HSS: formate, etc.) \uparrow = viscosity \uparrow = W_{EQ} \uparrow
 - Increased toxicity
 - Additional solvent loss due to reclaiming process
 - Volatile emissions (ammonia, aldehydes, amine fragments)
 - Nitrosamine accumulation
 - 1° and 3° amines form stable 2° amine degradation products from degradation [5]

High Temperature Oxidation Reactor (HTOR)

Contained in fume hood with spill containers

Dissolved Oxygen Stripping

PZ loss in the HTOR

Steady state oxidation of clean 8 m PZ (no N₂ sparging) Ammonia emissions

PZ oxidation in HTOR with continuous N₂ sparging (HTOR15) Ammonia emissions HTOR8 0.9 No N₂ sparging 0.8 N₂ Sparger Off 0.7 0.6 0.6 0.7 0.4 0.4 0.3 On

MNPZ decomposition \rightarrow oxidation products

MNPZ decomposition \rightarrow oxidation products

Iron solubility correlated to solvent degradation

Conclusions

- Oxidation of clean PZ in the HTOR reduced by 90% by N₂ sparging to remove dissolved oxygen
 - Degraded PZ continued to oxidize with N₂ sparging due to accumulation of nonvolatile oxidation carriers (Fe²⁺, aldehydes, amides, etc.)
 - Solvent reclaiming to minimize accumulation recommended
- Ammonia production increases linearly over time as clean solvent accumulates intermediary degradation products and iron
- Nitrosamine degradation will result in oxidation product accumulation
 - 1.5 moles of ammonia produced per mole of NO₂ absorbed
 - NO₂ prescrubbing potentially critical to minimize degradation product accumulation
- Iron solubility in PZ correlated to cumulative solvent contamination
- Nickel, chromium, and manganese accumulation do not catalyze PZ oxidation

References

[1] Chi S, Rochelle GT. "Oxidative Degradation of Monoethanolamine." *Ind Eng Chem Res.* 2002, 41(17), pp 4178-4186

[2] Voice AK. *Amine Oxidation in Carbon Dioxide Capture by Aqueous Scrubbing*. The University of Texas at Austin. Ph.D. Dissertation. 2013

[3] Strazisar BR, Anderson RR, White CM. "Degradation Pathways for Monoethanolamine in a CO₂ Capture Facility." *Energy Fuels*. 2003;17(4):1034–1039

[4] Sexton A, Dombrowski K, Nielsen PT, Rochelle GT, Fisher K, Youngerman J, Chen E, Singh P, Davison J. "Evaluation of Reclaimer Sludge Disposal from Post-Combustion CO₂ Capture." *Energy Procedia*. 2014, 63:926-939.

[5] Fine NA. *Nitrosamine Management in Aqueous Amines for Post-Combustion Carbon Capture*. The University of Texas at Austin. Ph.D. Dissertation. 2015.

[6] Nielsen PT, Le L, Rochelle GT. "Piperazine degradation in pilot plants." *Energy Proc.* 2013;37:1912–1923

[7] Cousins A, Nielsen PT, Huang S, Cottrell A, Chen E, Rochelle GT, Feron PHM. "Pilot-scale evaluation of concentrated piperazine for CO₂ capture at an Australian coal-fired power station: duration experiments." *Greenhouse Gas Sci Technol.* 2015;5:363-373.

[8] Zheng L, Landon J, Zou W, Liu K. "Corrosion Benefits of Piperazine As an Alternative CO2 Capture Solvent." *Ind Eng Chem Res.* 2014, 53(29):11740-11746

Questions?

Cumulative NH₃ emissions strongly correlated with total formate accumulation

[6; 7]

Ammonia rate is correlated with dissolved iron accumulation in pilot plants

[6; 7]

NH₃ vs Fe²⁺ in HTOR

Effect of stripper temperature

MNPZ Degradation

2-PZOH and EDA in pilot plants

HTOR Apparatus

Inhibitors in HTOR (MEA oxidation)

Figure 8.13: Effect of inhibitors of ammonia production from 7 m MEA oxidation in the HTCS with 2% CO₂ in air cycling from 55 to 120 °C. Metals added (mM): 0.4 Fe²⁺, 0.1 Mn²⁺, 0.1 Ni²⁺, 0.05 Cr³⁺ Voice, 2014

Iron-MEA Complex

PZ does not form complex?

Oxidation: Electron abstraction

Oxidation: Electron abstraction

Cyclic aldehydes and imines

Voice, 2014; LePaumier 2009; da Silva, 2012

Oxidation: Hydrogen abstraction

Sexton, 2008

31

PZ Oxidation

Amine reacts (S_N 2) with protonated formaldehyde to form iminium salt, reduced to methylamine in presence of formate. Formate oxidized to CO₂

Requires oxidative environment to produce aldehyde, reducing environment to make methyl-PZ. Only forms in cyclic systems. In LGF: PZ + formaldehyde produces polymer foam

1-MPZ is significantly more volatile than PZ, may represent an emissions concern. MPZ:PZ 40x greater in water wash samples

Viscosity increase due to HSS accumulation

