Presentation about MHI CO2 capture technology

September 2017 Takahito Yonekawa

© 2017 MITSUBISHI HEAVY INDUSTRIES, LTD. All Rights Reserved.

"NRG Energy, JX Nippon complete world's largest post-combustion carbon capture facility on-budget and on-schedule¹"

August 2017 – Power Magazine "Plant of the Year"

¹NRG press release: http://investors.nrg.com/phoenix.zhtml?c=121544&p=irol-newsArticle&ID=2236424

As a global leader in industrial and infrastructure manufacturing, **Mitsubishi Heavy Industries** is creating commercially viable technology for capturing carbon emissions from coal-fired plants, while enhancing domestic oil production.

MHI's Carbon Capture Technologies

KM CDR – Kansai Mitsubishi Carbon Dioxide Removal – Process®

KM CDR Process is a registered trademark of Mitsubishi Heavy Industries, Ltd., in Japan, the United States of America, European Union (CTM), Norway, Australia, and China.

KM CDR Process® Development History

From 1991 – 2 TPD Nanko Pilot Plant on Natural Gas Exhaust (Kansai Electric Power Co.)

From 2002 -1 TPD Hiroshima Pilot Plant on Coal Exhaust (MHI R&D Center)

From 2006 – 10 TPD Matsushima Pilot Plant on Coal Exhaust (J-Power)

MHI is the world's leading large scale post-combustion CO₂ capture technology licensor.

MHI tested various chemicals to develop the KS-1[™] solvent for the KM CDR Process^{®.}

- MHI evaluated over 200 solvents and tested 20 solvents at its first CO₂ capture pilot plant at KEPCO's Nanko Power Plant in 1991.
- KS-1[™] has exceptionally low corrosivity, high stability, and high CO₂ absorption capacity.
- MHI still uses the Nanko pilot plant to develop new solvents, new process schemes, and new equipment.

MHI performed extensive testing to understand the impact of flue gas impurities and to develop countermeasure technologies.

Hiroshima R&D Facility (1 mtpd)

Matsushima Pilot Plant (10 mtpd)

- 2002 began testing on coal-fired flue gas at Hiroshima R&D Facility.
- 2006 completed several test programs on a slip stream from a commercial coal fired power plant in Matsushima, Japan.
 - Performed long term operation to verify the impact of coal-fired flue gas impurities on the KM CDR Process[®].

Scale-up Testing

MHI had extensive experience and resources to ensure successful scale-up of its KM CDR Process[®].

- High performance packing is very sensitive to liquid distribution.
- 2008 tested malfunctions of liquid distributors at Mihara Works.
- Absorber measures ~35 ft x ~15 ft.
- The test program was invaluable to the final design and to guarantee performance for large scale projects.
- Scaling technique is similar to that used on more than 200 commercial FGD systems.

MHI's CO₂ Capture Technology & Experience

Plant Barry CO₂ Demo Plant – helped prove commercial viability of carbon capture on coal fired flue gas

Plant location	Mobile County (Alabama, U.S.A.)		
Plant owner	Southern Company subsidiary Alabama Power		
Plant scale	25 megawatts (MW _{eq})		
Flue gas amount	116,800 Nm ³ /h		
CO_2 conc.	10.1 mol%-wet		
CO ₂ capture capacity	500 metric ton/day (150,000 ton/year)		
CO ₂ removal	90%		

Operating data as of 8/31/14:		
Operating time	12,400 hrs	
Captured CO ₂	230,100 metric ton	
Injected CO ₂	115,500 metric ton	

* Additional technology demonstrations are on-going (HES, ACC).

MOVE THE WORLD FORW>RD MITSUBISHI HEAVY INDUSTRIES GROUP

Applications of CO₂ Capture Facilities

Chemical production has been the main driver of MHI's 12 commercial projects.

Year of Delivery	Country	Flue Gas Source	CO ₂ Capacity (mtpd)	Application
1999	Malaysia	NG Fired Furnace	210	Urea Production
2005	Japan	NG and Heavy Oil Boiler	330	General Use
2006	India	NG Fired Furnace	450	Urea Production
2006	India	NG Fired Furnace	450	Urea Production
2009	India	NG Fired Furnace	450	Urea Production
2009	Bahrain	NG Fired Furnace	450	Urea Production
2010	UAE	NG Fired Furnace	400	Urea Production
2010	Vietnam	NG Fired Furnace	240	Urea Production
2011	Pakistan	NG Fired Furnace	340	Urea Production
2012	India	NG Fired Furnace	450	Urea Production
2014	Qatar	NG Fired Furnace	500	Methanol Production
2016	USA	Coal-Fired Boiler	4,776	Enhanced Oil Recovery

Increase of Urea Production

To install the flue gas CO_2 recovery unit can realize to maximize urea synthesis by balancing ammonia and CO_2

Case-1: CO2 Recovery - CO2 Injection at Reformer Inlet

Case-2: CO2 Recovery - CO2 Injection at Reformer Outlet before Compression

Enhanced Oil Recovery drives major North American CCUS projects.

CO₂ supply chain

- Thermal Power Plant CO₂ is created from combustion
- 2) Capture System CO₂ is separated and compressed
- Pipeline CO₂ is transported to oil field
- Oil Field CO₂ is injected and recycled for oil production

NRG Fact Sheet: Carbon capture and enhanced oil recovery: http://www.nrg.com/documents/business/generation/581409-factsheet-petra-nova-carbon-capture-final.pdf

MOVE THE WORLD FORW>RD MITSUBISHI HEAVY INDUSTRIES GROUP

Commercial Plant for CO₂-EOR

The world's largest CO₂ capture plant on coal-fired flue gas began commercial operation on December 2016.

Plant location	NRG WA Parish Power Plant in Thompsons, TX	
Project owner	Petra Nova – partnership between NRG Energy and JX Nippon Oil & Gas	
	nrg 🕅 🕖	
Plant scale	240 megawatts (MW _{eq})	
CO ₂ conc.	11.5 mol%-wet	
CO ₂ capacity	4,776 metric ton/day (1.4 mil ton/year)	
CO ₂ removal	90%	

CO ₂ Used for CO ₂ -EOR			
Pipeline	eline 12 in diameter, ~81 miles		
Injection Site	West Ranch Oil Field		

U.S. Department of Energy "W.A. Parish Post-Combustion CO2 Capture and Sequestration Project Final Environmental Impact Statement Volume I" (Feb, 2013), DOE/EIS-0473

CO₂ Captured for Enhanced Oil Recovery (EOR)

- Compressed CO₂ is delivered by an 81 mile CO₂ pipeline to the West Ranch oil field.
- Up to 1.4 million metric tons of CO₂ will be annually injected into the West Ranch formation.
- Oil production could be enhanced from 300 barrels/day to up to 15,000 barrels/day.

The West Ranch CO₂-EOR Project

Proposed CO₂ Pipeline Route

NRG FACT SHEET

Quencher and Absorber Construction

Rectangular steel towers and modular construction

 \rightarrow Speedy and flexible Construction method

Absorber Module Lifting

Petra Nova Site Photo

MOVE THE WORLD FORW>RD M

MITSUBISHI HEAVY INDUSTRIES GROUP

Continuing Developments

MHI has been investigating new solvents to further reduce the cost of CO_2 capture.

New Solvent Testing – Lab Results			
KS-1™		New Solvent	
Steam Consumption	1	0.92	
Solvent Degradation	1	0.53	
Solvent Emission	1	0.40	

- MHI conducted solvent screening in the laboratory and the Nanko pilot plant.
- New solvent has achieved lower steam consumption, solvent degradation, and solvent emissions than KS-1[™].
- New solvent may require a higher solvent circulation flow rate which increases electricity consumption.
- Benefits appear to outweigh the higher flow rate.

MHI's KM CDR Process[®] can be successfully applied to NGCC power plants.

Typical Flue Gas Conditions			
	Unit	Coal fired Boiler	NG fired GT
CO ₂	Vol.%	10 - 14	3 - 4
0 ₂	Vol.%	4 - 6	10 - 15
SOx	ppm(dry)	1 - 50	<0.3
PM (Dust)	mg/Nm ³	3 - 10	NA

- MHI operated 1 mtpd pilot plant for 3,000 hrs on simulated NGCC flue gas.
- KS-1^m proved resistant to O₂ degradation despite higher concentration.
- MHI can provide large absorbers to account for lower CO₂ concentration.
- KM CDR Process[®] requires fewer treatment systems as a result of the minimal SOx and dust in flue gas.

MHI has the capability to investigate advanced NGCC-CO₂ capture configurations to consider existing and new assets.

Fully optimized integration between NGCC and CO₂ capture can:

- Take advantage of high efficiency gas turbines
- Reduce parasitic load of CO₂ capture
- Reduce capital cost of CO₂ capture

MHI's Carbon Capture Technology

- Tested MHI proved viability at multiple R&D facilities.
- Delivered MHI delivered eleven (11) operating commercial CO₂ capture plants prior to the Petra Nova Project.
- Scaled-up MHI successfully scaled-up and demonstrated long-term operation at Alabama Power's Plant Barry.

Commercial Plant for CO₂-EOR

 Petra Nova
December 2016 – the world's largest post-combustion CO₂ capture project on coal-fired flue gas (4,776 mtpd) – completes performance testing.

Continuing Developments

- New Solvents MHI is developing new solvents to reduce utility consumption and emissions.
- NGCC MHI is ready to optimize CO₂ capture for **NGCC applications**.