Amine Aerosol Characterization by FTIR and PDI in Pilot Plant Testing

Matt Beaudry The University of Texas at Austin September 7th, 2017

THE UNIVERSITY OF TEXAS AT AUSTIN

McKetta Department of Chemical Engineering

Outline

Introduction

- Amine scrubbing
- Aerosol emissions

Analytical Methods

- Fourier Transform Infrared Spectrometry
- Phase Doppler Interferometry

Results

- Baghouse Pretreatment at NCCC
- SO₃ Generation at UT-SRP
- SO₃ Concentration Effect on Aerosol Emissions
- WW Temp and Flows
- Generalized Aerosol Emission Correlations

Introduction: Amine-Based CO₂ Capture

Analytical Methods

FTIR

- Gasmet DX-4000
- Concentrations of H₂O, CO₂, NH₃, SO₂, Amines
- No differentiating between vapor and aerosol phases

PDI

- Artium Technologies
- Drop sizes 0.1 to 12 μm
- Concentrations up to 10⁷ per cm³

Amine Scrubbing Pilot Plant Sampling

Chemical Engineering

Results

- Baghouse Pretreatment at NCCC
- SO₃ Generation at UT-SRP
- SO₃ Concentration Effect on Aerosol Emissions
- WW Effect on Aerosol Emissions
 Generalized Aerosol Emission Correlations

FTIR Sampling of MEA Emissions

PDI measurements on SSTU outlet:

Unable to detect aerosol at water wash outlet (<0.1 µm diameter & low concentration)

SO₃ Generation at UT-SRP

Baghouse is effective at aerosol mitigation • Expensive solution Will not be constructed at every facility Still need to improve understanding of • how amine scrubbing process conditions impact aerosol emissions.

Results

- Baghouse Pretreatment at NCCC
- SO₃ Generation at UT-SRP
- SO₃ Concentration Effect on Aerosol Emissions
- WW Effect on Aerosol Emissions
 Generalized Aerosol Emission Correlations

SO₃ Generation at UT-SRP

UT-SRP Pilot Plant: 0.1 MWe

Chemical Engineering

SO₃ Generation and PZ Emissions

SO₃ Generation and PZ Emissions

SO₃ Generation and PZ Emissions

	Average	Min	Max
SO ₃ Concentration (ppm)	41	9	112
SO ₃ Generated (g/min)	0.84	0.23	1.68
SO ₃ Conversion Rate (%)	93.5	81.3	98.1
WW PZ Emissions with SO ₃			
Injection	90	9	189
ppm PZ emitted per ppm SO ₃			
injected	1.50	0.00	7.56

- 224 ppm for NCCC SSTU (0.05 MWe)
- 112 ppm for UT-SRP (0.1 MWe)
- 22 ppm for NCCC PSTU (0.5 MWe)

Results

- Baghouse Pretreatment at NCCC
- SO₃ Generation at UT-SRP
- SO₃ Concentration Effect on Aerosol Emissions
- WW Effect on Aerosol Emissions
 Generalized Aerosol Emission Correlations

SO₃ Generation, $0.5 \rightarrow 1.4$ g/min, $31 \rightarrow 92$ ppm

Results

- Baghouse Pretreatment at NCCC
- SO₃ Generation at UT-SRP
- SO₃ Concentration Effect on Aerosol Emissions
- WW Effect on Aerosol Emissions
 Generalized Aerosol Emission Correlations

SO₃ Generation, 1.4 g/min, 53 ppm

13:45

Time (hh:mm)

14:13

50

()

14:42

20

()

12:47

13:16

(PF)

WW Flow (50 lb/hr), WW T

Results

- Baghouse Pretreatment at NCCC
- SO₃ Generation at UT-SRP
- SO₃ Concentration Effect on Aerosol Emissions
- WW Effect on Aerosol Emissions
 Generalized Aerosol Emission Correlations

- Analysis of process properties to observe how each impacts aerosol emissions:
 - Temperatures
 - Flow Rates
 - Gas Phase Concentrations

Temperatures:	R ²
Gas Outlet T	0.564
Top Solvent/WW T	0.493
IC Solvent T	0.118
Top Bed T	0.510
Middle Bed T	0.172
Bottom Bed T	0.107

- Temperatures at top bed have greater correlation with amine emissions than lower bed temperatures.
 Amine emissions depend on gas temperatures
 - more than solvent temperatures.

Temperatures

Flow Rates	\mathbf{R}^2
Water Wash Flow	0.397
Intercooling Flow	0.206
L/G	0.162

 Solvent flow rates at top beds have a greater impact on amine emissions than flow rates through lower beds

Gas Phase Concentrations	R ²
CO ₂ In	0.143
CO ₂ Out	0.270

CO₂ concentration at absorber outlet has greater correlation with amine emissions than CO₂ concentration at inlet

Conclusions

- Baghouse pretreatment mitigates amine aerosol at NCCC.
- Increasing SO₃ concentrations increases amine emissions.
- Process temperatures most significant in determining aerosol emissions.
 - Gas temperatures matter more than solvent temperatures.
 - Temperatures at absorber outlet more significant than temperatures at the inlet.
- Solvent emissions more dependent on water wash flow rates than intercooling/lower bed flow rates.
- Increasing CO₂ concentration at absorber outlet decreases amine aerosol emissions.

Acknowledgements

Thank you

Rochelle Lab

Dr. Rochelle

- Dr. Steven Fulk
- Dr. Eric Chen
- Korede Akinpelumi and Vietnam Nguyen
- NCCC SSTU operations crew

UT-SRP operations crew

THE UNIVERSITY OF TEXAS AT AUSTIN McKetta Department of Chemical Engineering

McKetta Department of Chemical Engineering

References

Beaudry M, Fulk S M, Rochelle G T. "Field Measurement of Amine Aerosol by FTIR and Phase Doppler Interferometry." *Energy Procedia*. 2017;114:906-929.

Brachert L, Kochenburger T, Schaber K. "Facing the Sulfuric Acid Aerosol Problem in Flue Gas Cleaning: Pilot Plant Experiments and Simulation" *Aerosol Sci. and Tech.* 2013;47:1083-1091.

Fulk S M, Rochelle G T. "Quantification of Gas and Aerosol-phase Piperazine Emissions by FTIR Under Variable Bench-scale Absorber Conditions." *Energy Procedia*. 2014;63:871-883.

Kamijo T., Kajiya Y., Endo T., Nagayasu H., Tanaka H., Hirata T., Yonekawa T., Tsujiuchi T. "SO3 Impact on Amine Emission and Emission Reduction Technology" *Energy Procedia*. 2013;37:1793-1796.

Khakharia P, Brachert L, Mertens J, Huizinga A, Schallert B, Schaber K, Vlugt T J H, Goetheer E. "Investigation of aerosol based emission of MEA due to sulfuric acid aerosol and soot in a Post Combustion CO₂ Capture process" *Int. J. Greenhouse Gas Control.* 2013;19: 138–144.

Mertens J, Knudsen J, Thielens ML, Anderson J. "On-line monitoring and controlling emissions in amine post combustion carbon capture: A field test" *Int. J. Greenhouse Gas Control.* 2012;6:2-11.

Saha C., Irvin J. H. "Real-time aerosol measurements in pilot scale coal fired post-combustion CO2 Capture." *Journal of Aerosol Science*. 2017;104:43-57

Additional Slides

Analytical Methods: PDI

Photodetectors quantify drop size via phase shift

• Reduces window attenuation

Droplet movement causes Doppler shift in phases

• Determines droplet velocity

Size Range: 0.1 – 12.0 μm Concentration Limit: 10⁷ per cm³

Velocity + number count used to determine particle concentration

Artium Technologies, PDI-100MD User Manual, 2015

Lack of aerosol confirmed with oscilloscope

Absorber T Effect on PZ Emissions

SO₃ Generation, 1.4 g/min, 93 ppm

Temperatures

Flow Rates

Solvent Loadings

Solvent Loadings	R ²
Rich Loading	0.367
Lean Loading	0.005

• Rich loading has greater influence on amine emissions than lean loading

Inlet and Outlet CO₂ Concentrations

NCCC SSTU

FTIR and PDI Field Sampling

FTIR and PDI Field Sampling

Chemical Engineering