

Mass Transfer Performance and Correlations for CO₂ Absorption into Aqueous Blended of DEEA/MEA in a Random Packed Column

PCCC4, Alabama, USA, Sep.6, 2017

Zhiwu Liang, zwliang@hnu.edu.cn

Joint International Center for CO₂ Capture and Storage (iCCS) Dept. of Chemical Engineering, Hunan University, PR China

Hunan University, Changsha, China

College of Chemistry and Chemical Engineering Hunan University

Hunan University, CHINA

CO,捕获与封存国际合作中心

2009

Joint International Center for CO₂ Capture & Storage (iCCS), Hunan University, P.R.China

About iCCS in Hunan University, China

Current Members : 40

- > 7 Professors
- 1 Engineer
- 2 Post-doctors
- 30 Current Graduates

Research Interests:

Solvents for CO₂ Capture
 Kinetics & Mass Transfer
 Process Development
 CO₂ Capture Pilot Test
 CO₂ Utilization

Aqueous Amine CO₂ Capture at iCCS

- > Amine screening &Thermodynamics
- > Kinetics & Mass transfer
- Membrane & Packing Contactor
- Degradation & Corrosion
- Heat Cost of Amine Regeneration
- Process Simulation & Pilot Test

- Solid Adsorption CO₂ Capture
- > Oxy-fuel Process CO₂ Capture
- CO₂ Physical & Chemical Utilization

- National Science and Technology Support Plan (MOST of China. 2012BAC26B01) RMB 48.8M
- National Natural Science Foundation of China (NSFC. 21376067, U1362112, 21536003) RMB 7.2M
- The Innovative Research Team Development Plan-(MOE of China. IRT1238) RMB 3.0M
- Shaanxi Yanchang Petroleum Co.,LTD Technology Development, RMB 3.0M
- National 1000-Talent plan and 985-subject through Hunan University RMB 8.8M

Thermal de	98 Pap
In regard CA, The Annual CA, The An	Pub
Bit of a property of the second sec	A
1. Standard: Sin A provide standard (A provide standard) (A provide stan	Ch
"Terminant methods and a source	Ind. I
Attention Experimental study on mass transfer and prediction using artificial neural network for CO, absorption into access DETA Experimental study on mass transfer and prediction using artificial neural network for CO, absorption into access DETA Component of the CO, absorption into access DETA Raine N: Component of the CO, absorption into access DETA Component of the CO, absorption into access DETA	Int. J. C
Territoria di Antonio	Applied E., F
Solubility, alteraption hard and mass instanting nucleis of CDs, absorption instancement without of the dimetrylations 2-properties "year target", inclusion of the company of the company of the company planet target inclusion and all "Another the company of the company of the company of the company of the company and the company of the company of the company of the company of the company and the company of the company of the company of the company of the company and the company of	CEJ, JMS
<text><text><section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header></section-header></section-header></section-header></section-header></section-header></section-header></section-header></section-header></text></text>	<page-header><page-header><page-header><page-header><text><text><text><text><text><text><text><text><text><text><text><text><text><text><text><text><text><text><text></text></text></text></text></text></text></text></text></text></text></text></text></text></text></text></text></text></text></text></page-header></page-header></page-header></page-header>

Papers (2011-2017)			
Published Journal	No.		
AIChE Journal	7		
Chem. Eng. Sci.	8		
d. Eng. Chem. Res.	9		
J. Greenh. Gas. Cont.	12		
E., Fuel, E. &Fuel, S&P.Tech.,	62		
JMS, C <i>ET, CanJChE.,</i>			
105	AGE		
Instrumentation of the second secon	tudy on the Solvent Regeneration EA Solution Using Single and Hybrid olid Acid Catalysts Under Name Artises Transversement in Strategie (21): Source Mark 10, 100, 100, 100, 100, 100, 100, 100,		

Comparison exceeding the orbit dealed in

Outline of this work

1. Background

2. Experimental section

3. Results and discussion

4. Conclusions

5. Acknowledgement

Traditional absorption-stripping process

1.Background

Conflict between good CO₂ absorption and regeneration performance
 The application of blended amines can combine the advantage of each amine

Primary amines: MEA

H₂N OH

Advantages: High CO₂ absorption rate, low price of solvent

DEEA/MEA-CO₂ (3 M 1:1)

Shown excellent CO₂ absorption/regeneration performance and cyclic capacities (Luo et al. *Sep. Purif. Technol.* 2016, 169:279-288)

Theories

Reaction mechanism for blended CO₂-DEEA-MEA system $DEEA + H^+ \xleftarrow{K_1} DEEAH^+$ $CO_2 + DEEA + H_2O \xleftarrow{K_2k_{2,MDEA}k_{-2,MDEA}} DEEAH^+ + HCO_3^ MEA + H^+ \xleftarrow{K_3} MEAH^+$ $CO_2 + MEA \xleftarrow{K_4 k_{2,MEA} k_{-2,MEA}} MEACOO + H^+$ $MEACOO^{-} + H_2O \xleftarrow{K_5} MEA + HCO_3^{-}$ $CO_2 + H_2O \xleftarrow{K_6} HCO_3 + H^+$ $CO_2 + OH^- \xleftarrow{K_7 k_{27} k_{-2,7}} HCO_3^ HCO_3^- \leftarrow K_8 \rightarrow CO_3^{2-} + H^+$ $H_2O \longleftrightarrow OH^- + H^+$

Objectives: to know the Mass Transfer Performance

2.Experimental section

Schematic diagram of absorption experimental process

Determination of the mass transfer coefficient K_Ga_v

Based on the two-film theory, material balance, and mass flux equation

$$N_{A}a_{V} = K_{G}a_{V}(P_{A} - P_{A^{*}}) = K_{G}a_{V}P(y_{A,G} - y_{A}^{*})$$

$$K_{G}a_{v} = \frac{G}{P(y_{A,G} - y_{A}^{*})}\frac{dY_{A}}{dz} \longrightarrow K_{G}a_{v} = \frac{G}{Py_{A,G}}\frac{dY_{A}}{dz}$$

□ Determination of unit volume absorption rate **Φ**

(1)
$$\phi = K_{G}a_{v}P_{CO_{2}}$$
 $P_{CO_{2}} = \frac{P_{CO_{2},in} - P_{CO_{2},out}}{\ln(P_{CO_{2},in} / P_{CO_{2},out})}$
(2) $\phi = \frac{G_{1}\Omega(Y_{1} - Y_{2})}{V_{r}}$

Effect of liquid feed temperature on K_Ga_ν and Φ

(solvent concentration 3 kmol/m³; liquid flow rate 5.85 m³/m²-hr; CO₂ loading 0.32 mol/mol; inert gas flow rate 39.17 kmol/m²-hr; CO₂ partial pressure 15 kPa)

Effect of lean CO₂ loading on K_Ga_vand Φ

(solvent concentration 3 kmol/m³; liquid flow rate 5.85 m³/m²-hr;inert gas flow rate 39.17 kmol/m²-hr; CO₂ partial pressure 15 kPa, liquid feed temperature 313.13 K)

Effect of liquid flow rate on K_Ga_v and Φ

(solvent concentration 3 kmol/m³; inert gas flow rate 39.17 kmol/m²-hr;

CO₂ partial pressure 15 kPa, liquid feed temperature 313.13 K)

Effect of CO₂ partial pressure on K_Ga_v and Φ

(solvent concentration 3 kmol/ m^3 ; lean CO₂ loading 0.18 mol/mol; inert gas flow rate

39.17 kmol/m²-hr; liquid flow rate5.85 m³/m²-hr; liquid feed temperature 313.13 K)

Effect of inert gas flow rate on K_Ga_v

(solvent concentration 3 kmol/m³; lean CO₂ loading 0.22 mol/mol; liquid flow rate 5.85 m³/m²-hr; CO₂ partial pressure 15 kPa; liquid feed temperature 313.13 K)

Effect of inert gas flow rate

(solvent concentration 3kmol/m³; lean CO₂ loading 0.28mol/mol; liquid flow rate

5.85m³/m²-hr; CO₂ partial pressure 10kPa; liquid feed temperature 313.13K)

Effect of lean CO₂ loading

(solvent concentration 3kmol/m³; liquid flow rate 5.85m³/m²-hr; inert gas flow rate

39.17kmol/m²-hr; CO₂ partial pressure 15kPa, liquid feed temperature 313.13K)

Temperature and CO₂ concentration profile

(solvent concentration 3kmol/m³; lean CO₂ loading 0.13mol/mol; liquid flow rate

5.85m³/m²-hr; inert gas flow rate 39.17kmol/m²-hr; CO₂ partial pressure 15kPa; liquid feed

temperature 313.13K)

An accurate correlation for the calculation of K_Ga_v is very essential for the design of the absorber and predicting the effects of operational parameters

 $K_{Ga_{v}}$ is a function of the liquid flow rate (L), CO₂ partial pressure (P_{CO2}), and free amine concentration [(α eq- α)C]

$$K_{G}a_{v} \propto L^{b} \left[\alpha_{eq} - \alpha \right] C / P_{CO_{2}}$$

Result of K_ga_v correlations for each section of absorber

No.	Correlated equation	R ²	AAD
Section1	$K_{G}\alpha_{\nu}1 = L^{0.45} \left[1.5816 \times \left(\alpha_{eq} - \alpha \right) C / P_{CQ} + 0.0526 \right]$	0.8627	10.4%
Section2	$K_{G}a_{v}2 = L^{0.45} \left[1.6524 \times \left(\alpha_{eq} - \alpha \right) C / P_{CO_{2}} - 0.0172 \right]$	0.9408	10.2%
Section3	$K_{G}a_{v}3 = L^{0.45} [1.7196 \times (\alpha_{eq} - \alpha)C/P_{CO_{2}} - 0.0329]$	0.8849	11.1%
Section4	$K_{G}a_{v}4 = L^{0.45} [1.8896 \times (\alpha_{eq} - \alpha)C/P_{CO_{2}} + 0.0642]$	0.8795	9.8%
Section5	$K_{G}a_{v}5 = L^{0.45}[0.3935 \times (\alpha_{eq} - \alpha)C/P_{CO_{2}} + 0.0192]$	0.7991	4.9%

Comparison between y_{out} values calculated from proposed correlation and those from experimental results

>The overall mass transfer coefficient (K_Ga_v) and unit volume absorption rate Φ increases as liquid feed temperature and liquid flow rate increase, and decreases with increasing CO₂ loading, while changes in inert gas flow rate have little effect.

>The bottom temperature of the column (T_{bot}) increases with CO₂ partial pressure and decreases with increasing CO₂ loading and liquid flow rate.

>The correlations between K_{Ga_v} and operating parameters were proposed in DEEA/MEA-CO₂ system.

> The y_{out} correlation was also studied in this work and found to be in satisfactory agreement with experimental results with AAD of 8.4%.

Co-workers (**Dr. Gao X., Dr. PT., Dr. Luo X., Xu B. et al**) thanks to the supports :

National Natural Science Foundation of China (NSFC-Nos. 21476064, 21376067 and U1362112)

Doctoral Program Foundation (20130161110025), National KeyTechnology
 R&D Program (Nos. 2012BAC26B01 and 2014BAC18B04)

Innovative Research Team Development Plan-Ministry of Education of China (No. IRT1238)

China's State"Project 985" in Hunan University Novel Technology Research & Development for CO2 Capture, and the Institutions of higher learning professional comprehensive reform pilot projects

Excellence engineers plan (No. 521201828)

College of Chemistry and Chemical Engineering Hunan University

Joint International Center for CO₂ Capture and Storage (iCCS)