

Absorption and desorption kinetics of catalyst-aided CO₂ capture in blended solutions of butyl (amino) ethanolamine and 2-amino-2-methyl-1-propanol (BEA-AMP), monoethanolamine and methyl diethanolamine (MEA-MDEA), and monoethanolamine (MEA)

Daniel B. Afari

James Coker¹, Jessica Narku-Tetteh¹ and Raphael Idem^{1*}

¹Clean Energy Technologies Institute, Faculty of Engineering and Applied Science, University of Regina

4th Post Combustion Capture Conference (PCCC4), 2017 September 05 - 08

Presentation Outline

- Introduction
- Objective
- Theory and Experimental
- Results and Discussion
- Conclusion
- Acknowledgement

Introduction

Amine-based Post-combustion capture (PCC) of CO_2 from flue gases is considered a part of mature technologies in Carbon Capture and Sequestration (Shi et al, 2014)

Solvent improvement and **process optimization** are currently the main areas being understudied to improve the Post-Combustion capture technology (Narku-Tetteh et al, 2017).

Narku-Tetteh et al used some criteria to develop a novel solvent which can be better than MEA and MEA-MDEA in kinetic performance

Kinetic studies has been done for MEA and MEA-MDEA on incorporation of solid acid catalyst into the desorption column and it showed an improvement over the conventional desorber. (Akachuku, 2016)

Objectives

- To obtain experimental kinetic data for the novel solvent blend 2butylethanol amine and 2-amino-2-methyl-1-propanol (BEA-AMP) and compare with blended monoethanolamine and methyl diethanolamine (MEA-MDEA) and single monoethanolamine (MEA) in a pilot plant
- To compare their kinetic performance with the addition of solid acid catalyst in the desorption column on a pilot plant basis

Theory

Some typical desorption reactions occurring in the CO₂ - aqueous amine solutions studied

 $MEAH^{+}/BEAH^{+} + H_{2}O \leftrightarrow MEA/BEA + H_{3}O^{+}$ $MEACOO^{-}/BEACOO^{-} + H_{3}O^{+} \leftrightarrow MEA/BEA + CO_{2} + H_{2}O$ Carbamate-forming amines

 $AMPCOO^{-} + H_2O \leftrightarrow AMP + HCO_3^{-}$ $AMPH^{+} + H_2O \leftrightarrow AMP + H_3O^{+}$

 $HCO_3^- + H_3O^+ \leftrightarrow CO_2 + 2H_2O$

 $HCO_3^- + H_3O^+ \leftrightarrow CO_2 + 2H_2O$

Sterically-hindered amines

 $MDEA + CO_2 + H_2O \leftrightarrow MDEAH^+ + HCO_3^ MDEAH^+ + H_2O \leftrightarrow MDEA + H_3O^+$

Bicarbonate-forming amines

5

Chemical structure of amines studied

Monoethanolamine (MEA)

7

Adapted and Modified Schematic process flow diagram for post-combustion CO₂ capture from (Osei P.A., 2016)

Column Packing and catalyst bed arrangement (Osei P. A., 2016)

Plug flow condition

• Applying Froment and Bischoff et al (1990) criterion:

 $\frac{\text{Catalyst bed height}}{\text{Catalyst particle size}} = \frac{L}{d_p} \ge 50 \quad \text{This work (L/d_p = 170)}$

 $\frac{\text{Catalyst bed diameter}}{\text{Catalyst particle size}} = \frac{D}{d_p} \ge 10 \text{ This work (D/d_p = 17)}$

Experimental Process Parameters

Parameters	
Gas flowrate	15 slpm
Liquid flowrate	60 ml/min
CO ₂ concentration in feed gas	15%
liquid concentration	5M MEA, 7M MEA-MDEA, 4M BEA-AMP
Absorber inlet temperature	28°C
Desorber inlet temperature	87°C
Absorber operating pressure	101.325 KPa
Desorber catalyst and weight	HZSM-5 (150g)

CO₂ concentration profile in absorber for both blank and catalytic systems

Lean loadings of solvents in plant run

Lean loading (mol CO ₂ /mol amine)	5M MEA	5/2M MEA- MDEA	2/2M BEA-AMP
no catalyst (blank)	0.42	0.35	0.33
HZSM-5 catalyst (Si/Al = 19)	0.41	0.32	0.30

Percentage (%) increase in cyclic capacity using MEA (blank) as base case

	MEA	MEA- MDEA	BEA-AMP
Blank	0%	17%	110%
HZSM-5	36%	62%	169%

Cyclic Capacity of solvents studied

Percentage (%) increase in reaction rate using MEA (blank) as base case

Amine Selection Chart (Narku-Tetteh et al., 2017)

Conclusions

- The novel blend BEA-AMP had the fastest absorption and desorption rates followed by MEA-MDEA blend with single MEA being the slowest
- The solvent structural properties (alkyl, H and OH⁻ groups) greatly contributes to their kinetic performance
- It confirms the results obtained by Narku-Tetteh et al., (2017) on a pilot plant scale. The 4 M bi-solvent blend consisting of equimolar concentration of BEA and AMP was found to be the best solvent because it displayed the best desorption performance and a very good absorption parameter
- The lower lean loading of MEA-MDEA provided a greater driving force (more free amines) for its reactivity towards CO₂ as compared to single MEA
- The addition of a solid acid catalyst, HZSM-5 increased desorption rates by transferring its available protons to bicarbonate. This provided an alternative pathway resulting in the faster release of CO₂
- It is economically feasible to use the novel blend BEA-AMP in industrial applications as it outperformed the other solvents greatly.

Future Work

- Studies on selection and addition of solid base catalyst in absorber for novel solvent blend BEA-AMP system.
- Effect of solid base catalyst weight, temperature, solvent concentration and flowrate on the BEA-AMP-CO₂ system
- Development of empirical power law and mechanistic models for blended solvent BEA-AMP reaction with CO₂

References

- Akachuku A. Kinetic Study of the Catalytic Desorption of Carbon Dioxide (CO₂) from CO₂-loaded Monoethanolamine (MEA) and blended Monoethanolamine-Methyldiethanolamine (MEA-MDEA) during Post-Combustion CO₂ Capture from industrial flue gases. MASc. Thesis, University of Regina, Canada (2016).
- Caplow, M. (1968). Kinetics of Carbamate formation and breakdown. Journal of the American Society, 90 (24), 6795-6803
- Donaldson TL, Nguyen YN. Carbon dioxide reaction kinetics and transport in aqueous amine membranes. • Industrial & Engineering Chemistry Fundamentals. 1980;19(3):260-266.
- Froment G. F., Bischoff K. B., (1990). Chemical Reactor Analysis and Design, second edition, Wiley, New York
- Idem, R. Shi, H., Gelowitz, D. and Tontiwachwuthikul, P. 'Catalytic method and apparatus for separating a gaseous component from an incoming gas stream' - United States Patent: US 9,586,175 B2, March 7, 2017.
- Narku-Tetteh, J., Muchan P., Saiwan C., Supap T., Idem, R. Selection of components for formulation of amine blends for post combustion CO₂ capture based on the side chain structure of primary, secondary and tertiary amines. Chem. Eng. Sci. (2017), http://dx.doi.org/10.1016/j.ces.2017.02.036.
- Osei P. A (2016) Mass transfer studies on catalyst-aided CO₂ desorption in a Post-combustion CO₂ capture plant. MASc. Thesis, University of Regina, Canada.
- Shi, H., Naami, A., Idem, R., & Tontiwachwuthikul, P. (2014). Catalytic and non-catalytic solvent regeneration during absorption-based CO2 capture with single and blended reactive amine solvents. International Journal of Greenhouse Gas Control, 26, 39-50.

Acknowledgement

Clean Energy Technology Research Institute

Natural Sciences and Engineering Research Council of Canada

Faculty of Graduate Studies and Research (FGSR), University of Regina THANK YOU

Appendix

Non-catalytic CO₂ desorption mechanism

⁽Akachuku et al, 2016)

21

Regeneration heat

of Hydrozonium ion

Attack of nitrogen in

carbamate ion by H⁺

N-C bond breaks forming

weakens N-C bond

free CO₂ and amine

weakens hydrogen bond

•

•

•

 $(H_{3}O^{+})$

Appendix

HZSM-5 structure

- Proton (H⁺) donation by catalyst
- Conversion of carbamate ion to carbamic acid
- Chemisorption on Al site
- N-C bond breaks forming free CO₂ and amine

Appendix

- Solvent Structural properties
- Lean loading

CH₃CH₂CH₂CH₂-

(n-butyl)

