

Corrosion in amine pilot plants

4th Post Combustion Capture Conference

September 6, 2017

Kent B. Fischer, Shyam S. Sharma, Gary T. Rochelle

ENERGY COST CAPITAL COST 16.1 \$/MT 19.3 \$/MT **CO2** CO2**Stainless** No low vessels cost hanging fruit 2X-3.5X as left. much as $\eta > 50\%$ carbon steel

At less than 100% operating time, capital cost is even more important!

Frailie, 2014

The University of Texas at Austin

McKetta Department

Cockrell School of Engineering

Outline

- SRP 2017 piperazine pilot plant ER probe results
- Pilot vs. bench scale ER probe comparison
- SRP coupon analysis
- NCCC 2017 ethanolamine ER probe results

• Sacrificial wire in amine solution corrodes

$$R \propto \frac{1}{A}$$

- $R = resistance (\Omega)$
- A = wire cross sec. area
- Resistance ↑, current ↓, measure current and convert to corr. rate

Corrosion (µm/yr)

Good 100 - 500

Poor 1000 - 5000

Unacceptable 5000+

- April-May 2017
- Two ER corrosion probes in hot, lean stream leaving stripper
 - 316L SS
 - 1010 CS
- One ORP Probe
- In addition, one ER probe in absorber sump

C1010 corrosion in SRP hot, lean 5 m PZ, 150°C, $\alpha = 0.21$

• Each point is an average reading over a steady state run

316L corrosion in SRP hot, lean 5 m PZ, 150°C, $\alpha = 0.21$

• Each point is an average reading over a steady state run

C1010 corrosion in SRP absorber, 5 m PZ, 30°C, $\alpha = 0.33$

• Each point is an instantaneous reading w/ handheld

SRP pilot plant corrosion 2017

Location	Alloy	T (°C)	Avg. Loading (mol CO ₂ /mol N)	Corrosion (μm/yr)	Error (µm/yr)
Absorber	C1010	30	0.33	331	± 32
Hot, lean	C1010	150	0.21	325	± 92
Hot, lean	316L	150	0.21	174	± 31

• Unexpectedly high absorber corrosion!

Corrosion (µm/yr)				
Good 100 - 500				
Poor 1000 - 5000				
Unacceptable 5000+				

10

- Bench scale C1010 measurements agree w/ pilot
- Bench scale 316L measurements overpredict

(

• PZ at many degradation levels, loadings is 2 orders of magnitude less corrosive to C1010 than rich MEA

- Passivation of C1010 by $FeCO_3$ $Fe^{2+} + HCO_3^- \rightarrow FeCO_3 + H^+$
 - Sensitive to loading, Fe²⁺ solubility
- Passivation of 316L by Cr_2O_3 $2\operatorname{Cr} + 3\operatorname{H}_2O \rightarrow \operatorname{Cr}_2O_3 + 6\operatorname{H}^+ + 6e^-$
 - Sensitive to reducing conditions, O₂ depletion
 - Bench-scale apparatus depassivated 316L

SRP hot lean coupons. 340 hours H_2O testing, 162 hours of operation w/ 5 m PZ, 150°C, $\alpha = 0.21$

The University of Texas at Austin McKetta Department of Chemical Engineering Cockrell School of Engineering W/ 5 m PZ, 150°C, α = 0.21

Black Product: FeCO₃ (Siderite)

SRP absorber. 340 hrs H2O testing. 392 hrs ³operating w/ 5 m PZ, 30°C, $\alpha = 0.33$

- Higher than expected C1010 corrosion in absorber
- 316L performance in hot, lean better than expected
- C1010 in hot, lean 5 m PZ
 - Sometimes forms tight, crystalline layer of FeCO₃
 - Sometimes forms flakey layer of FeO(OH) and Fe_3O_4 , may have been caused by extended H_2O testing.
- C1010 in cold, rich 5 m PZ
 - Formed patchy, flakey layer of Fe and FeO(OH)
- Can we modify conditions so that we always form FeCO₃ protective layer?

MEA Corrosion at NCCC

- 3 ER probes
 - Absorber Sump
 - Stripper Sump, Stripper Inlet Separator
- 6 coupons near each ER probe location
- June 14, 2017 July 17, 2017
- Coupons not yet analyzed

Conclusions from NCCC

- ER probes are sometimes unreliable.
- Should always check ER probe results against coupons.
- Low corrosion rates could be genuine. Will double check ER corrosion rates versus coupon corrosion rates.
- Currently working on SEM/XRD characterization.
- White film in stripper sump could be contamination from a previous NCCC run.

Questions? kentfischer@utexas.edu

The University of Texas at Austin McKetta Department of Chemical Engineering

Backup Slides

- 4 ER probe locations in stripper
 - Several probes:1010 CS, 316L SS
 - Probes will be swapped around
- 5 corrosion coupon locations in stripper
- 2 ORP probes
- In addition, 2 ER probes in absorber (1010 CS)
- 4 corrosion coupon locations in absorber

30 wt % PZ -- FeCO₃ layer

30 wt % MEA – Fe_3C layer

A106 Carbon Steel, 0.43 mol CO₂/mol alkalinity, 80°C, ~150 hr. (Zheng, Landon and Matin, et al. 2014)

The University of Texas at Austin McKetta Department of Chemical Engineering Cockrell School of Engineering W/ 5 m PZ, 150°C, α = 0.21

