Thermo-fluid-dynamical modelling of salt precipitation during CO2 injection in saline aquifers, and the effect on injectivity

Åsmund Ervik¹, Morten Hammer¹, Halvor Lund¹, Ailo Aasen¹

¹SINTEF Energy Research, Trondheim, Norway

Abstract

Safe and efficient CO2 injection relies on a reservoir with sufficient injectivity and permeability. Experience from the Tubåen formation (Snøhvit) and other CO2 injection sites has shown that the injectivity can be significantly reduced due to salt precipitation in the near-well region [1]. This is caused by water dissolving in the injected (dry) CO2, which leaves behind over-saturated brine, which in turn causes salt to precipitate. At Snøhvit, this meant that injection had to be stopped well before the reservoir storage capacity was reached. If the world is to meet the future CO2 storage rates of more than 5 gigatonnes per year, as projected e.g. in the IEA two-degree scenario [2], a large number of full-scale injection and storage operations must be conducted. Expected future CO2 storage rates are comparable to natural gas production rates of today, which involves several hundred thousand wells worldwide. Prediction of how and when salt precipitation causes injection problems is essential to ensure safe and reliable injection.

Clogging of pores in the near-well region is a long-standing research topic, especially in the context of oil and gas production, and can be caused by a number of effects such as mineral/salt precipitation, hydrate/ice formation, filtrated mud particles and precipitation of asphaltenes. The particular case of salt precipitation during CO2 injection for storage has received less attention, but some work has been undertaken using laboratory-scale experiments [4,5], larger field experiments [3] as well as reservoir flow simulations [6-9]. The latter has usually been done with simulators initially built for studying other phenomena such as nuclear waste disposal safety, where CO2 injection capabilities have been added later. The models that are used for relating rock permeability to precipitation, as well as relative permeability to saturation, are highly sensitive to the numerical values of precipitation and saturation, and thus it is crucial to have a model which gives highly accurate values for these quantities. If a consistent thermodynamic model can be used in simulations, high accuracy is obtained for all values of pressure, temperature, composition etc.

In this paper, we present a new approach to modelling CO2 flow into a brine-filled reservoir using highly accurate thermodynamic models that consider both CO2, H2O and salts simultaneously. We consider the reservoir flow at close proximity to an injection well, where precipitation is most important for injectivity. We model the flow of the two separate fluid phases, one CO2-dominated and one brine-dominated, and we keep track of all components in each phase.

To achieve a thermodynamically consistent scheme for the fluid solver, we adapt the commonly used implicit pressure – explicit saturation (IMPES) scheme for porous media flow, but with a twist. We retain the usual pressure solution scheme at each time step, which computes the pressure field from the permeability and viscosity of the phases present, as shown in Fig. 1. But instead of solving next the transport equations for saturation, we solve the total mass transport equations for each component
present (CO₂, water, salts). From this information, we can perform a thermodynamic calculation known as a multiphase pressure-temperature-composition (PTz) flash, which yields the saturation and the densities of the two fluid phases. This approach gives a thermodynamically consistent formulation of the system, at the cost of increased computational cost in the flash calculation as compared to existing, simpler approaches.

The fluid properties are given by accurate property models and Equations of State (EoS). In our thermodynamic formulation, the electrolyte CPA (eCPA) EoS [10-11] is used to describe phase equilibrium and densities. eCPA extends the CPA model with a Debye-Hückel model for electrostatic interaction and the Born term for hydration energy. The eCPA model consistently describes all the fluid phases. The precipitated salt phases are predicted using Gibbs free energy EoSs.

Figure 1: Velocities (left) and pressure distribution at the horizontal plane z=0.5 (right) for a case with one injector and two producers, in a reservoir with highly varying permeability.

The fluid properties are given by accurate property models and Equations of State (EoS). In our thermodynamic formulation, the electrolyte CPA (eCPA) EoS [10-11] is used to describe phase equilibrium and densities. eCPA extends the CPA model with a Debye-Hückel model for electrostatic interaction and the Born term for hydration energy. The eCPA model consistently describes all the fluid phases. The precipitated salt phases are predicted using Gibbs free energy EoSs.

References
11. Maribo-Mogensen, B., Development of an Electrolyte CPA Equation of state for Applications in the Petroleum and Chemical Industries. Technical University of Denmark, Department of Chemical and Biochemical Engineering, 2014, PhD thesis