Regeneration of Non-Aqueous Precipitating Amine Solvents

KARLSSON H.K. & SVENSSON H.

LUND UNIVERSITY

Outline

- Introduction
 - Project
 - Absorption System
- Experimental Method
- Results
- Conclusion & Future work

Energy efficient CO₂ Removal

-mainly funded by the Swedish energy agency

Includes:

- Absorption studies
- Crystallization studies
- Regeneration studies
- Separation studies
- Design and modelling
- Lab scale Demonstration

Energy efficient CO₂ Removal

-mainly funded by the Swedish energy agency

Includes:

- Absorption studies
- Crystallization studies
- Regeneration studies
- Separation studies
- Design and modelling
- Lab scale Demonstration

Energy efficient CO₂ Removal

-mainly funded by the Swedish energy agency

Includes:

- Absorption studies
- Crystallization studies
- Regeneration studies
- Separation studies
- Design and modelling
- Lab scale Demonstration

Presentation by Meher Sanku

Absorption System

AMP (2-amino-2-methyl-1-propanol)

(Triethylene glycol dimethyl ether)

Amine:

NMP (*N*-methyl-2-pyrrolidone)

- Non-aqueous two phased system
 - Liquid which precipitates when reacted with CO₂
 - Only part of the stream heated for regeneration
- Regenerates at temperatures 70-90 °C
 - Possibility to use low grade heat

H. Svensson, Lund University, 2014.

 $\mathcal{CO}_2(g) \leftrightarrow \mathcal{CO}_2(sol)$

(1) Dissolution

 $CO_2(g) \leftrightarrow CO_2(sol)$

(1) Dissolution

 $CO_2(sol) + RNH_2(sol) \leftrightarrow RNH_2^+COO^-(sol)$

(2) Zwitter ion formation

 $CO_2(g) \leftrightarrow CO_2(sol)$

(1) Dissolution

 $CO_2(sol) + RNH_2(sol) \leftrightarrow RNH_2^+COO^-(sol)$

(2) Zwitter ion formation

 $RNH_2^+COO^-(sol) + RNH_2(sol) \leftrightarrow RNH_3^+(sol) + RNHCOO^-(sol)$ (3) Carbamate formation

 $CO_2(g) \leftrightarrow CO_2(sol)$

(1) Dissolution

 $CO_2(sol) + RNH_2(sol) \leftrightarrow RNH_2^+COO^-(sol)$ (2) Zwitter ion formation

 $RNH_2^+COO^-(sol) + RNH_2(sol) \leftrightarrow RNH_3^+(sol) + RNHCOO^-(sol)$ (3) Carbamate formation

 $RNH_3^+(sol) + RNHCOO^-(sol) \leftrightarrow RNH_3^+RNHCOO^-(s)$ (4) Carbamate precipitation

 $CO_2(g) \leftrightarrow CO_2(sol)$

(1) Dissolution

 $CO_2(sol) + RNH_2(sol) \leftrightarrow RNH_2^+COO^-(sol)$ (2) Zwitter ion formation

 $RNH_{2}^{+}COO^{-}(sol) + RNH_{2}(sol) \leftrightarrow RNH_{3}^{+}(sol) + RNHCOO^{-}(sol)$ (3) Carbamate formation

 $RNH_3^+(sol) + RNHCOO^-(sol) \leftrightarrow RNH_3^+RNHCOO^-(s)$ (4) Carbamate prec

(4) Carbamate precipitation

Maximum loading due to chemical reaction : 0.5 n_{CO2}/n_{Amine}

Crystal structures – Precipitate

Different CO₂ solubility for NMP and TEGDME

- Precipitation at different amount of CO₂ injected

Two types of crystal structures have been identified for the solid precipitate:

- One monoclinic
- One unidentified

Observed both with NMR and XRD analysis Both structures observed in both solvents

H. Svensson, C. Hulteberg, H.T. Karlsson Energy Procedia 2014, 63, 750–757.

Aim

To Investigate what CO_2 partial pressures that can be obtained from regeneration of CO_2 absorbed by AMP dissolved in either NMP or TEGDME, at different temperatures.

• Part of evaluation of optimal regeneration temperatures

Experimental Conditions

- Two absorption systems
- Two amine concentrations
- Varying initial theoretical loadings

Loading:

$$\alpha = \frac{(n_{CO2})_{abs}}{(n_{amine})_0}$$

Amine	Solvent	C _{amine} (wt%)	Loading Aim (n _{CO2} /n _{Amine})	Theoretical Loading (n _{CO2} /n _{Amine})	Temperature (°C)
AMP	NMP	15	0, 0.2, 0.5	0, 0.20, 0.48	25-85
AMP	NMP	25	0, 0.2, 0.5	0, 0.20, 0.49	25-85
AMP	TEGDME	15	0, 0.2, 0.5	0, 0.20, 0.49/0.51	25-85
AMP	TEGDME	25	0, 0.2, 0.3, 0.5	0, 0.20, 0.31, -	25-85

Experimental Set-up

Experimental Set-up

ChemiSens AB true heat-flow CPA201

Experimental Set-up

Experimental Procedure

- Thermostat-controlled waterbath
- Batch Reactor
 - 250 cm³
 - Glass and Stainless steel
 - Electrical Stirrer 300 rpm

Experimental Procedure

- Approx. 100 g sample
- CO₂ were dosed at 25 °C
- Temperature were ramped between 25-85 °C with pauses to reach equilibrium every 10 °C
- Equilibrium was defined as max deviation of 0.005 bar and heat flow 0.02 W for 500s.
- Experiments performed at elevated pressures.

Results volatility of Solvent mixtures

The solvent vapor pressure at zero loading

Absorption System	Max. pressure (85°C) (bar)
15wt% AMP in NMP	0.037
25wt% AMP in NMP	0.075
15wt% AMP in TEGDME	0.079
25wt% AMP in TEGDME	0.11

$$T_{b}(AMP) = 165 °C$$

$$T_{b}(NMP) = 202 °C$$

$$T_{b}(TEGDME) = 216 °C$$

Results AMP/NMP

Initial loading (mol _{CO2} /mol _{amine})	P1 (85°C) (bar)	P2 (85°C) (bar)	Devation (%)
0.2	2.28	2.29	0.31
0.5	5.86	5.83	0.36

Initial loading (mol _{CO2} /mol _{amine})	P1 (85°C) (bar)	P2 (85°C) (bar)	Devation (%)
0.2	2.80	2.76	1.02
0.5	7.10	7.04	0.60

Results AMP/TEGDME

Initial loading (mol _{CO2} /mol _{amine})	P1 (85°C) (bar)	P2 (85°C) (bar)	Devation (%)
0.2	1.43	1.49	2.91
0.5	3.27	3.59	-

Initial loading (mol _{CO2} /mol _{amine})	P1 (85°C) (bar)	P2 (85°C) (bar)	Devation (%)
0.2	0.92	0.83	7.27
0.3	1.23	-	-

Results AMP/TEGDME 25

Experiments with 25 wt% AMP in TEGDME were cancelled because of severe precipitation and separation

Results Pressure vs. Temp

Results Pressure vs. Temp

Comparison with MEA

*M. R. M. Abu-Zahra et al. *Int. J.Greenh. Gas Control*, vol. 1, pp. 37–46, 2007. ** V. Andersson et al. *Int. J. Greenh. Gas Control*, vol. 21, pp. 1–10, 2014.

Secondary Precipitation

During the experiments a secondary precipitation occurred at elevated temperatures. Seen as a decrease in pressure and peak in heat flow.

Secondary Precipitation

Loading (mol _{CO2} /mol _{amine})	amine	solvent	C-amine (wt%)	T (°C)
0.2	AMP	NMP	15	х
0.2	AMP	TEGDME	15	85/85
0.5	AMP	NMP	15	Х
0.5	AMP	TEGDME	15	85/85
0.2	AMP	NMP	25	55/65
0.2	AMP	TEGDME	25	65/75
0.5	AMP	NMP	25	55/55
0.3	AMP	TEGDME	25	65

In all experimentns except 15 wt% AMP in NMP

■ rich loading (mol CO2/mol amine) ■ lean loading (mol CO2/ mol Amine) ■ cyclic capacity (mol CO2/kg)

■ rich loading (mol CO2/mol amine) ■ lean loading (mol CO2/ mol Amine) ■ cyclic capacity (mol CO2/kg)

Conclusion

- Possibility for pressurized CO₂ from regeneration
- Higher pressures obtained when NMP is used as solvent than when TEGDME is used
- Secondary precipitation (all but 15 wt% AMP in NMP)
 - For 15 wt% AMP regeneration starts at 55 °C
 - Higher for the others (still precipitate left et 85 °C)
- Extensive precipitation for 25 wt% AMP in TEGDME Not optimal solution mixing issues

Future work

- Regeneration experiments at atmospheric pressure
 - Rich and lean loadings
 - Cyclic capacities
- Further studies of the crystal precipitate
- Physical properties of amine solutions

Acknowledgements

Acknowledgements

Thank you for your attention!

hanna.karlsson@chemeng.lth.se or helena.svensson@chemeng.lth.se

