Thermodynamics and ANN models for correlation and predication of the equilibrium CO₂ solubility of seven tertiary amine solvents

> <u>Helei Liu</u>, Paitoon (PT) Tontiwachwuthikul, Raphael Idem, Zhiwu Liang

Clean Energy Technologies Research Institute (CETRI), (previously known as the International Test Centre for CO2 Capture – ITC) University of Regina, CANADA Joint International Center for CO2 Capture and Storage (iCCS), Hunan University, China

Outline

- **1. Introduction**
- 2. Theory
- **3. Experiment**
- 4. Results and discussion
- **5.**Conclusion
- 6. Acknowledgements

CCS Research ?

Key technologies for reducing global CO₂ emissions under Blue Map scenario

A wide range of technologies will be necessary to reduce energyrelated CO₂ emissions substantially.

Introduction

Introduction

History of Solvent Development

Use of Amine Solvents

- CCS Applications and
 - *Gas Processing
 - *Refinery gas
 - Landfill gas
 - ✤Bio gas
 - *Solution gas
 - *****EOR gas
 - **↔**Etc.

In the 1960's and 1970's

Gas-Liquid Reactions

P. V. Danckwerts, F.R.S.

Shell Professor of Chemical Engineering University of Cambridge

In the 1980's

GAS TREATING WITH

CHEMICAL SOLVENTS

GIANNI ASTARITA

University of Naples and University of Delaware

DAVID W. SAVAGE Exxon Research and Engineering Company

ATTILIO BISIO Exxon Research and Engineering Company

Ind. Eng. Chem. Fundam. 1983, 22, 239–249

Sterically Hindered Amines for CO₂ Removal from Gases

Guido Sartori* and David W. Savage

Corporate Research, Exxon Research and Engineering Company, Linden, New Jersey 07036

Steric hindrance and basicity are shown to control CO_2 -amine reactions. In aqueous amino alcohols, steric hindrance is the dominant factor giving high thermodynamic capacity and fast absorption rates at high CO_2 loadings. Introducing steric hindrance by a bulky substituent adjacent to the amino group lowers the stability of the carbamate formed by CO_2 -amine reaction. Reduced carbamate stability allows thermodynamic CO_2 loadings to exceed those attainable with conventional, stable-carbamate amines. Lowering carbamate stability also leads to high free-amine concentration in solution; therefore fast amine- CO_2 reaction rates are obtained despite some reduction of the rate constant owing to steric interference. Hindered amines show capacity and absorption rate advantages over conventional amines for CO_2 removal from gases by absorption in aqueous amine solutions and amine-promoted hot potassium carbonate. Cyclic capacity broadening of 20–40% and absorption rate increases up to 100% or more are possible with certain hindered amines.

Table II. Examples of Sterically Hindered Amines

In 2000's to now

- PCCC Conferences
- GHGT Conferences
- and much more

US007910078B2

(12) United States Patent Tontiwachwuthikul et al.

(54) METHOD OF CAPTURING CARBON DIOXIDE FROM GAS STREAMS

- (75) Inventors: Paitoon Tontiwachwuthikul, Regina
 (CA); Andrew G. H. Wee, Regina (CA);
 Raphael Idem, Regina (CA);
 Kreangkrai Maneeintr, Regina (CA);
 Gao-jun Fan, Regina (CA);
 Amornvadee Veawab, Regina (CA);
 Amr Henni, Regina (CA); Adisorn
 Aroonwilas, Regina (CA); Amit
 Chakma, Waterloo (CA)
- (73) Assignee: University of Regina, Regina, Saskatchewan (CA)
- (*) Notice: Subject to any disclaimer, the term of this patent is extended or adjusted under 35

(10) Patent No.: US 7,910,078 B2 (45) Date of Patent: Mar. 22, 2011

C07D 211/02	(2006.01)
C07D 211/00	(2006.01)
C07D 295/00	(2006.01)

- (52) **U.S. Cl.** **423/228**; 423/230; 423/238; 544/170; 546/184; 546/248; 564/503

See application file for complete search history.

(56) **References Cited**

U.S. PATENT DOCUMENTS

3,347,621	Α	10/1967	Papadopoulos et al.
4,101,633	Α	7/1978	Sartori et al.
4,112,050	A	9/1978	Sartori et al.
4,112,051	Α	9/1978	Sartori et al.
4,112,052	Α	9/1978	Sartori et al.
1 272 025	A	3/1002	Compliana

"Developed based on a systematic modification of the structure of amino alcohols by an appropriate placement of the substituent, especially hydroxyl function and relative position of amino group" (US Patent 7,910,078 – B2)

Faculty of Engineering & Applied Science

Separation and Purification Technology 167 (2016) 97-107

Synthesis of new amines for enhanced carbon dioxide (CO₂) capture performance: The effect of chemical structure on equilibrium solubility, cyclic capacity, kinetics of absorption and regeneration, and heats of absorption and regeneration

Sudkanueng Singto^a, Teeradet Supap^{b,*}, Raphael Idem^{b,*}, Paitoon Tontiwachwuthikul^{b,*}, Supawan Tantayanon^{a,c,*}, Mohammed J. Al-Marri^d, Abdelbaki Benamor^d

^a Petrochemistry and Polymer Science, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand

^bClean Energy Technologies Research Institute (CETRI), Faculty of Engineering and Applied Science, University of Regina, Regina, Saskatchewan S4S 0A2, Canada

^c Green Chemistry Research Lab, Faculty of Science, Department of Chemistry, Chulalongkorn University, Bangkok 10330, Thailand

^d Gas Processing Center, Qatar University, Doha, Qatar

*** Equilibrium Solubility – One of the key parameters

Equilibrium Solubility of CO₂

DEAB~PZ>AMP>MDEA>MEA >DEA

Math model for Equilibrium Solubility of CO₂

Equilibrium constant

(Sema et al., Ind. Eng. Chem. Res. 2011, 50, 14008-14015)9

Column performance at high loading. AMP (Run T28 - solid circles) vs MEA (Run T18 - open squares). Operating conditions: gas flow rate = 14.8 mol/m² s; liquid flow rate = 9.5 m³/m² hr; total amine concentration = 2.0 kmol/m²; inlet gas CO₂ concentration = 19.15%; outlet CO₂ loading = 0.583 moles of CO₂ / mole of amine. The lines represent smoothed experimental values.

Why do we need this information ?

$$\alpha[AMP] = [CO_2] + [HCO_3^{-}] + [CO_3^{2-}]$$
(11)
$$[RNH_3^{+}] + [H^{+}] = [OH^{-}] + [HCO_3^{-}] + 2[CO_3^{2-}]$$
(12)

 $[AMP] = [RNH_2] + [RNH_3^+]$

 $\begin{aligned}
\kappa_{1} &= [H^{+}][RNH_{2}] / [RNH_{3}^{+}] & (6) \\
\kappa_{3} &= [H^{+}][HCO_{3}^{-}] / [CO_{2}] & (7) \\
\kappa_{4} &= [H^{+}][OH^{-}] & (8) \\
\kappa_{5} &= [H^{+}][CO_{3}^{2-}] / [HCO_{3}^{-}] & (9)
\end{aligned}$

$$RNH_{3}^{+} = H^{+} + RNH_{2}$$
(1)

$$RNHCOO^{-} + H_{2}O = RNH_{2} + HCO_{3}^{-}$$
(2)

$$H_{2}O + CO_{2} = H^{+} + HCO_{3}^{-}$$
(3)

$$H_{2}O = H^{+} + OH^{-}$$
(4)

$$HCO_{3}^{-} = H^{+} + CO_{3}^{2-}$$
(5)

Classical Model of CO2-Amines Solubility

(10)

Kent, R. L.; Eisenberg, B. Hydrocarbon Process. 1976, 55 (2), 87.

Theory-thermodynamic model

> Tertiary amine and steric hindrance amine

$$R_3N$$
 $H-O-H$
 $CO_2 \rightarrow R_3NH^+ + HCO_3^-$

Liquid phase

Chemical Reactions

 $R_1R_2R_3H^+ \longleftrightarrow R_1R_2R_3N + H^+$

 $\operatorname{CO}_2 + \operatorname{R}_1\operatorname{R}_2\operatorname{R}_3 + \operatorname{H}_2\operatorname{O} \xleftarrow{\operatorname{K}_2,\operatorname{K}_2,\operatorname{K}_2} \operatorname{R}_1\operatorname{R}_2\operatorname{R}_3\operatorname{H}^+ + \operatorname{HCO}_3^-$

 $H_2O + CO_2 \xleftarrow{K_3} H^+ + HCO_3^-$

 $CO_2 + OH^- \xleftarrow{K_4} HCO_3^-$

 $HCO_{3}^{-} \longleftrightarrow H^{+} + CO_{3}^{2-}$

 $H_2O \leftarrow K_6 \rightarrow H^+ + OH^-$

Theory-thermodynamic model

Expressions of K_i (i=3,5,6) and H_{CO2}

	$K_{\rm i}$ or $H^0_{CO_2}$	$=\exp\left(a+\frac{\mathbf{b}}{T}+\frac{\mathbf{c}}{T^2}\right)$	$+\frac{\mathrm{d}}{T^3}+\frac{\mathrm{e}}{T^4}$	$H_{CO_2} = \frac{H_{CO_2}^0}{7.50061}$	
	a	b	с	d	e
K ₃	-248.818	298.253E3	-148.528E6	332.648E8	-282.394E10
\mathbf{K}_{5}	-294.74	364.385E3	-184.158E6	415.793E8	-354.291E10
K ₆	39.5554	-987.9E2	568.828E5	146.4561E8	136.146E10
H _{CO2} ⁰	22.2819	-138.306E2	691.346E4	-155.895E7	120.037E9

Dominate reaction

Data source: Kent and Elsenberg, Hydrocarbon processing, 1976

23

Theory-thermodynamic model

Theory-ANN model

Error back propagated, W and b updated

(a) The basic structure of RBFNN with multiinput parameters

(b) the basic structure of BPNN

Topologies/Architectures of ANNs

A taxonomy of feed-forward and recurrent/feedback network architecture (Jain & Mao, 1996)

Experiment

Structure and abbreviation

Separation and Purification Technology 167 (2016) 97-107

Synthesis of new amines for enhanced carbon dioxide (CO₂) capture performance: The effect of chemical structure on equilibrium solubility, cyclic capacity, kinetics of absorption and regeneration, and heats of absorption and regeneration

Sudkanueng Singto^a, Teeradet Supap^{b,*}, Raphael Idem^{b,*}, Paitoon Tontiwachwuthikul^{b,*}, Supawan Tantayanon^{a,c,*}, Mohammed J. Al-Marri^d, Abdelbaki Benamor^d

^a Petrochemistry and Polymer Science, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand

^bClean Energy Technologies Research Institute (CETRI), Faculty of Engineering and Applied Science, University of Regina, Regina, Saskatchewan S4S 0A2, Canada

^c Green Chemistry Research Lab, Faculty of Science, Department of Chemistry, Chulalongkorn University, Bangkok 10330, Thailand

^d Gas Processing Center, Qatar University, Doha, Qatar

1-(2-HE)PP (1.7%)

1-(2-HE)PRLD (4.1%)

K	$-\exp(E + E T + E [CO]] + E \ln[\Lambda \min e]$	E_{5}
N ₂	$= \exp(\mathbf{L}_1 + \mathbf{L}_2 \mathbf{I} + \mathbf{L}_3 [\mathbf{CO}_{2aq}] + \mathbf{L}_4 \inf[\mathbf{A} \min \mathbf{C}] +$	D
		L total

	to	, tu	
Parameters —		Values	
	1-(2-HE)PP	1-(2-HE)PRLD	DE-1,2-PD
E_{I}	-40.4898	-40.56	-35.7233
E_2	0.076937	0.073686	0.048486
E_3	4.300501	4.258291	48.42123
E_4	-27.8278	-27.8767	-21.974
E_5	0.453665	0.463335	-0.97328

$$K_2 = \exp(E_1 + E_2T + E_3[CO_{2aq}] + E_4 \ln[A\min e] + \frac{E_5}{P_{total}})$$

		tota	
Parameters —		Values	
	HEMAB	DMAB	HEEAB
E_1	-37.1862	-44.3071	-40.637
E_2	0.065151	0.092229	0.077803
E_{3}	3.809235	2.00779	4.223386
E_4	-25.5374	-30.6291	-27.9302
E_5	0.036432	0.667424	0.473955

Data source: Singto et al., Separation and Purification Technology, 2016

Fail to give reasonable result

> The expression of K_2 is not suitable at

low CO₂ loading region

> The absolute deviation is small although

the relative deviation is large

$K_2 = exp$	$(E_1 + E_2 T + E_3)$	$CO_{2aq}] + E_4 \ln[$	A min e] + $\frac{E_5}{P_{total}}$)
	Domomotoro	Values	- totai
	Parameters	DPAB	
	E_{I}	-37.8501	-
	E_2	0.07901	
	$E_{\mathfrak{Z}}$	3.365714	
	E_4	-26.4749	
	E_{ϵ}	0.978131	

The summarize of all prediction results for investigated amines

Amine	AAD(%)							
5	Kent- Eisenberg model	Austgen Model	Liu-Helei model	Li-Shen model	Hu-Chakma model	Liu et al model	BPNN model	RBFNN model
DMAB	6.5	5.2	6.2	15.3	5.4	5.4	2.8	3.7
DPAB	28.5	24.8	25.6	23.3	25.8	24.7	850	824.9
HEMAB	8.5	9.3	8.7	66.4	8.4	8.3	4.9	6.0
HEEAB	4.6	4.7	4.9	32.7	4.2	4.2	3.6	5.6
1-(2-HE)PP	2.1	2.1	2.5	6.6	4.1	4.1	0.7	1.7
1-(2- HE)PRLD	2.6	2.6	2.1	3.2	1.7	1.7	0.7	2.6
D,E-1,2-AP	8.3	8.3	7.6	8.9	2.3	2.3	1.4	1.6

Conclusion

The CO₂ loading of some tertiary amine solvents was measured at various temperature and CO₂ partial pressure.
A novel model was developed for predicting CO₂ loading. It was found that the model was able to give reasonable predictions for most of investigating amines.

➤ANN models were developed for predicting CO₂ loading with the excellent AADs

➤ The solvents presented need to be used with other mixtures to get good results for CO2 capture.
³⁷

Good solvents need more than one ingredients !

Advancement and new perspectives of using formulated reactive amine blends for post-combustion carbon dioxide (CO₂) capture technologies

Chikezie Nwaoha ^{a, b, *}, Teeradet Supap ^{a, **}, Raphael Idem ^{a, b, ***}, Chintana Saiwan ^{a, b}, Paitoon Tontiwachwuthikul ^{a, b, c}, Mohammed J. AL-Marri ^c, Abdelbaki Benamor ^c

^a Clean Energy Technologies Research Institute (CETRI), Faculty of Engineering and Applied Science, University of Regina, SK, S4S 0A2, Canada ^b The Petroleum and Petrochemical College, Chulalongkorn University, Bangkok, 10330, Thailand

^c Gas Processing Center, Qatar University, Doha, Qatar

Acknowledgements

NSERC CRSNG

The Natural Sciences and Engineering Council of Canada (NSERC)

Clean Energy Technologies Research Institute (CETRI)

Canada Foundation for Innovation(CFI)

China Scholarship Council (CSC)

Faculty of Graduate Study and Research, University of Regina

