Alabama, PCCC4, 5th-8th September 2017

# Kinetics of oxidative and SOx-induced degradation of monoethanolamine under accelerated laboratory conditions

Hana Benkoussas, Grégoire Léonard, Rabah Kerbachi hana.benkoussas@student.ulg.ac.be Products, Environment, and Processes (PEPs) Department of Chemical Engineering University of Liège www.chimapp.ulg.ac.be





### Outline

- 1. Introduction
- 2. Dissolved O<sub>2</sub> concentration
- 3. Mass transfer
- 4. Oxidative degradation : with and without presence of sulfur dioxide
- 5. Conclusion and perspectives





# **1. Introduction**

# Post-combustion capture with amine solvent is a mature technology,

# But...

- Large energy penalty
  - Potential amine degradation
  - Emission of degradation products
  - Corrosion

### Current solvent of choice: *monoethanolamine*

- High capacity for CO<sub>2</sub> absorption
- Fast reaction kinetics
- High removal efficiencies





### **1. Introduction**

#### **Accelerated laboratory conditions**



pressure and temperature more severe than those of the pilot plant



Mass transfer<sup>1</sup>?

k<sub>L</sub>a?





[1] Goff and Rochelle, 2004. Ind. Eng. Chem. Res., 43, 6400. DOI: 10.1021/ie0400245

• • ENGINEERING

# **1. Introduction**

ENGINEERING

#### Degradation products obtained at lab scale vs. industrial scale



- 1. How does mass transfer affect oxidative degradation?
- 2. How sulfur dioxide affects amine degradation?



#### **Operating mode:**

The gas flow is sparged into 400 gr of MEA 30 wt% until reaching a constant concentration in dissolved  $O_2$ 

#### **Experimental conditions:**

- 29,7°C < T < 49,2°C
- 160 Nml/min gas flow
- Atmospheric pressure
- 1008,9 < PO<sub>2</sub> < 50445 Pa</p>
- [800-1000] rpm

ENGINEERING





Galvanic probe (Accuracy +/- 1%)



ENGINEERING

 $_{\odot}$  Influence of the partial pressure on dissolved O\_2 / 800 rpm



 Henry's Law (T:cst, equilibrium): the amount of dissolved gas is proportional to its partial pressure in the gas phase.



#### $\circ$ Influence of the partial pressure on dissolved O<sub>2</sub> / 1000 rpm



1000 rpm

PEPS CHEMICAL ENGINEERING



ENGINEERING

#### $_{\odot}$ Influence of the temperature on dissolved O\_2 $\,$ PO\_2 ~ 20178 Pa



- At equilibrium: dissolved  $O_2$  concentration =f(temperature and pressure)



université

### **3. Mass transfer**

$$\frac{dC_A}{dt} = K_L a \left( C_A^\star - C_A \right)$$

 $K_L$ a depends on several factors such as<sup>2</sup>:

- temperature, pressure,
- composition of the gas and liquid, viscosity
- liquid circulations and gas recirculations
- position of the probe in the reactor and assumptions on hydrodynamic conditions



### 3. Mass transfer

Determination of the k<sub>L</sub>a with consideration of the probe response time  $\tau_p$ 

$$\frac{C^{\star} - C_P}{C^{\star} - C_0} = \frac{1}{1 - \tau_P K_L a} \left( e^{-K_L a \cdot t} - \tau_P K_L a \cdot e^{\frac{-t}{\tau_P}} \right)$$

C<sup>\*</sup> [ppm]: is the dissolved oxygen concentration at saturation  $C_p$  [ppm]: is the concentration measured by the probe  $C_0$  [ppm]: is the concentration at  $t_0$ 



LIÈGE université

- • ENGINEERING

### 3. Mass transfer

• Influence of the temperature and the agitation rate





CHEMICAL

• Without presence of sulfur dioxide

**Degradation reactor Gas saturator** Gas supply FTIR 4 Ja N2 dilution 3b Controller Condenser P 5 Degradati AUM 24VDC Input and Dutput Modules -Alin 220V Université de Liège FTIR **Control Panel** 

CHEMICAL ENGINEERING



# Lab conditions:

#### Without presence of sulfur dioxide

- 300 g of 30 wt% MEA
- 120°C, 4 barg, 800 rpm
- 2 days
- Enhanced gas-liquid contact
- Continuous gas flow: 160 Nml/min
- 5% O<sub>2</sub> / 95% N<sub>2</sub>
- With presence of sulfur dioxide
- 100 ppm of aqueous  $H_2SO_3$  was chosen and added directly to 30 wt% MEA solution





#### • Without presence of sulfur dioxide



Comparison of GC-FID spectra between samples degraded at lab scale (BC DTR) and at industrial scale





- Without presence of sulfur dioxide
- kinetic model of solvent degradation

#### Arrhenius kinetics (mol/l.s):

Parameters are identified by minimizing the difference between calculated and observed degradation rates.

800 rpm
$$-r_{MEA} = 3.9 \times 10^5 e^{-48.116/RT} [O_2]^1$$
1000 rpm $-r_{MEA} = 5.3 \times 10^5 e^{-48.116/RT} [O_2]^1$ 





- Without presence of sulfur dioxide
  - $\circ$   $\,$  Kinetic model of solvent degradation  $\,$
  - o Ammonia emission



acceleration of the degradation

ENGINEERING

#### • With presence of sulfur dioxide



- SO<sub>2</sub>(g) was reported to accelerate MEA degradation with O<sub>2</sub> present<sup>3,4</sup>
- MEA oxidative degradation is significantly reduced with SO<sub>2</sub><sup>5</sup>



# 5. Conclusion and perspectives

- Measurements of dissolved O<sub>2</sub> concentrations in 30 wt% MEA
- The K<sub>L</sub>a of the experimental Degradation Test Rig is determined at 800 and 1000 rpm, 0,0057 and 0,007 s<sup>-1</sup> respectively
- It appears to be smaller than typical k<sub>L</sub>a for structured packing used in industrial conditions (0.01 < K<sub>L</sub>a < 0.04<sup>5</sup>)
- The acceleration of the oxidative degradation rate was mainly due to the higher temperature and PO<sub>2</sub>, but we also notice that the coefficient of mass transfer has an impact on oxidative degradation rate.
- Solvent degradation is experimentally studied and a kinetic model is proposed
- The effect of the presence of sulfur dioxide is studied experimentally





# 5. Conclusion and perspectives

 Kinetic model that considers both the chemical and the physical kinetics separately instead of usual apparent kinetics will be proposed



 kinetic model of the oxidative degradation in presence of sulfur dioxide will be proposed



# Thank you for your attention!



