

> 3D PHARMA PRINTING @ TNO KJELD VAN BOMMEL

LDDC – September 27, 2022

TNO WHO WE ARE AND WHAT WE DO

> Largest independent contract research and innovation organization in The Netherlands, est. 1932

• Over 3400 researchers active in 9 Units

- Positioned between universities and commercial companies
- Mission: Apply scientific knowledge to boost the innovative strength of our partners

• Active in the 3D printing space for 30+ years

3D PRINTING OVERVIEW OF TECHNOLOGIES

3D PRINTING EXTRUSION PRINTING

3D PRINTING OVERVIEW OF TECHNOLOGIES

3D PRINTING POWDER BED PRINTING + SELECTIVE LASER SINTERING

3D PHARMA PRINTING PRINTED TABLETS (TNO)

3D PHARMA PRINTING USPs

Research & Development tool

> Quickly produce and screen new formulations, shapes, dosages, release profiles, ...

> Printing ON medical products – e.g. conformal deposition on implants

) Personalized medication

- > API dose tuned to the need of the individual patient including children's medication
- > Polypill combine multiple APIs to decrease pill burden
- Creation of specific dosing regimes slow in- or decrease of API over time

> Different logistics

- Local and on demand production
- Creation of small batches
- Less stability issues (?)

3D PHARMA PRINTING @ TNO ECO-SYSTEM

3D pharma printing @TNO

3D PHARMA PRINTING @ TNO PROPOSITIONS

Feasibility studies

Next generation equipment development

Printing of personalized medicine

Non-destructive validation

NEXT GENERATION EQUIPMENT DEVELOPMENT TECHNOLOGY PLATFORMS DEVELOPED BY TNO

High accuracy Extrusion printing

High speed, high power Extrusion printing

Up-scaling Technologies

Powder bed printing and Selective laser sintering (separate or combined)

TECHNOLOGY PLATFORM HIGH ACCURACY (LOW MELT) EXTRUSION PRINTING

Focus: high accuracy for small tablets (e.g. paediatrics)

- > Stiff print head and syringe construction
- > Stainless steel syringes / aluminum nozzles
- > Smaller step size for extrusion motor
- > High accuracy temperature control for syringes and nozzles (+/- 0.1°C)
- > Powerful extruder with monitoring of extruder force
- > Print speed up to 3000 mm/min
- > Integrated cooling air shower, adjustable in air temperature and flow
- > Print bed can be heated, levelled, and switched out
- > Easy to clean

3D PHARMA PRINTING @ TNO PROPOSITIONS

Feasibility studies

Next generation equipment development

Printing of personalized medicine

Non-destructive validation

Current situation

Manipulating drugs needed in >50% of drug administrations in children

crushing tablets	making suspension
taste masking	splitting tablets
opening capsules	using iv fluids orally
diluting solutions	cutting patches

A.vd Vossen et al. Acta Pediatrica 2019 108, 1475 – 1481.

Slides courtesy of Elisabeth Ruijgrok, PharmD, PhD Pediatric Clinical Pharmacist, Deputy Head of Clinical Pharmacy

Erasmus MC Sophia Children's Hospital

Flecainide 4.2 mg

Tablet 50 mg?

Sophia Children's Hospital

Drug manipulation

Sophia Children's Hospital

PRINTING OF PERSONALIZED MEDICINE COLLABORATION ERASMUS MC

3D pharma printing @TNO

3D PHARMA PRINTING @ TNO PROPOSITIONS

Feasibility studies

Next generation equipment development

Printing of personalized medicine

Non-destructive validation

NON-DESTRUCTIVE VALIDATION TABLET QUALITY - HOW TO VALIDATE?

> When producing ever smaller series of tablets destructive testing will be no longer a valid solution.

Spectral analysis

Look at tablet

Look at filament

3D pharma printing @TNO

If: No inhomogeneity

3D PHARMA PRINTING ROADMAP

TIME

3D PHARMA PRINTING @ TNO OPPORTUNITIES TO COLLABORATE

Feasibility studies

Next generation equipment development

Printing of personalized medicine

Non-destructive validation

WHAT WOULD YOU LIKE TO PRINT?

kjeld.vanbommel@tno.nl

innovation for life

LDDC – September 27, 2022