

Quantum computing from life sciences to Al

LEIDEN DRUG DEVELOPMENT CONFERENCE

Vedran Dunjko

applied Quantum algorithms Leiden

A story

Penicillin

• 120+ orbitals = 240+ electrons = 10^{73} configurations to consider.

300 exabytes (300 billion gigabytes) available today.
need over 10⁵⁰ × total memory on Earth.

alternatively:

 ≈ 260 quantum bits (qubits)

A story

Penicillin

How valuable would such a technology be!?

• 120+ orbitals = 240+ electrons = 10^{73} configurations to consider.

300 exabytes (300 billion gigabytes) available today.
need over 10⁵⁰ × total memory on Earth.

alternatively:

 ≈ 260 quantum bits (qubits)

A story

Penicillin

• 120+ orbitals = 240+ electrons $= 10^{73}$ configurations to consider.

billion gigabytes) available today. otal memory on Earth.

its (qubits)

Quantum computer is a *universal simulator* of all physics...

Given "Teraqubits", "GigaQOPS"... sky is (not) the limit

Feynman

Manin

"Quantum computers realized"

Technology: always 10 years away until...

Theory: Game changer in data analysis, cryptanalysis, diff. equations

<aQab

Theory, prototypes, applications

full prototypes

1903

1920s

unforeseen applications

1969

nowish

Theory, prototypes, applications

full prototypes

1903

1920s

Theory, prototypes, applications

first approaches

1903

Theory, prototypes, applications

first approaches

full prototypes

1903

How to program them in the meantime?

The (mainstream) quantum computing challenge

small (1000-100000) perhaps very noisy

current focus:

 computing ground energies esp. electronic structure problem

applications in:

- binding affinities (e.g. hits)
- molecular dynamics (e.g. docking)

Vaidehi N., Jain A., J. Phys. Chem. B (2015), 119, 4, 1233–1242

The (mainstream) quantum computing challenge

Ground states hard even for QC!

heuristics; bigger QCs needed and new ideas needed

The (mainstream) quantum computing challenge

Ground states hard even for QC!

heuristics; bigger QCs needed and new ideas needed

Conventional methods honed for decades!

New kids on the block:

The (mainstream) quantum computing challenge

Ground states hard even for QC!

heuristics; bigger QCs needed and new ideas needed

New ideas arising daily. The field is only getting started

Conventional methods honed for decades!

New kids on the block:

Cao, Y., Fontalvo, J. R., & Aspuru-Guzik, A. (2018). Potential of quantum computing for drug discovery. IBM Journal of Research and Development, 1–1. doi:10.1147/jrd.2018.2888987

A new idea: quantum machine learning

Challenge: how to optimally program the limited quantum computers

Machine learning: useful results without explicit programming

Near-term Quantum ML: Deep neural networks \rightarrow Quantum Neural Networks

But are they better? On real problems? In drug design?

Progress in quantum machine learning

What are Quantum Neural Networks

We study:

- classification of all types
- learning capabilities
- trainability

Gyurik, C., Dunjko, V., arXiv:2208.06339 (2022) Jerbi, S. et al, arXiv:2110.13162 (2021)

Progress in quantum machine learning

What are Quantum Neural Networks

We study:

- classification of all types
- learning capabilities
- trainability

Do we need quantum neural networks?

Recent result:

- if data is generated by a "general" quantum process quantum learning is necessary
- Condensed matter? High-energy? **Drug design?**

Gyurik, C., Dunjko, V., arXiv:2208.06339 (2022) Jerbi, S. et al, arXiv:2110.13162 (2021) Image: Phys. Rev. Lett. 127, 050601 (2021)

But the proof is in the pudding

Theory \neq practice... except in theory....

Li, J. et. al arXiv:2101.03438 (2021) Marshall, S, Gyurik, C., Dunjko, V. arXiv:2203.13739 (2022)

But the proof is in the pudding

Theory \neq practice... except in theory....

Li, J. et. al arXiv:2101.03438 (2021) Marshall, S, Gyurik, C., Dunjko, V. arXiv:2203.13739 (2022)

Up next: quantum computational discovery

Theory, experiment, and industry exploring real world quantum solutions on real problems

applied Quantum algorithms Leiden

Les trains de projectiles pour la Lune.

Verne's way to the moon

Year 2000 as viewed from 1900

