
9 April 2019– Tommy Johnsen

Potential for liquified biogas as fuel in shipping

Together to cut NOx emissions

NOx tax, Agreement and Fund

The NOx Fund has provided extensive investment support to LNG fueled ships (3,2 billion NOK in total)

42 coastal fleet vessels on LNG

12 large passenger ships on LNG

First aquaculture vessel (well boat) on LNG

13 offshore vessels on LNG

Al of the statistics.

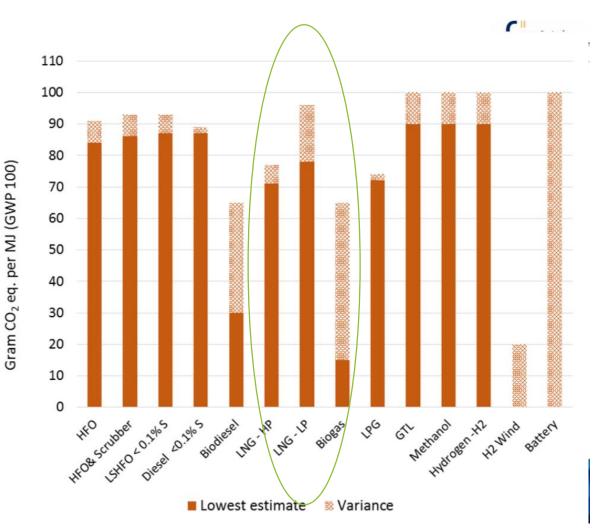
First fishing vessel on LNG

LNG resulting reduction in NOx and GHG

- Competitive OPEX (incl. fuel price) compared to MGO is an important driver for LNG, especially taking into account environmental taxes and costs resulting from new emission requirements.
- Conversion of ship engines from diesel (MGO) to LNG reduces emissions from the ship significantly:
 - ✓NOx-emissions by 80-95%
 - ✓ GHG-emission by 0-25%, including methane slip (depending on engine age and type – the newer the better)

LNG is a good short term GHG reduction measure in shipping, although further improvement is needed

- In April 2018, IMO adopted a Strategy on reduction of GHG emissions from ships:
 - □ To reduce the total annual GHG emissions by at least 50% by 2050 compared to 2008
- The NOx-fund is challenged (by environmental NGOs) if the effort to reduce NOx and GHG in Norway short term by LNG is in conflict long term GHG targets
- The NOx Fund believes there is no conflict because:
 - There is no other short term technical solution. Ship owners stopping to build new ships awaiting technology leaps is not an option.
 - Investing is LNG with aim to tap in LBG is in line with the IMO strategy, especially for coastal shipping (in Norway)



CO2-eq. emissions from LNG, biogas and other fuels in a life cycle perspective

Well to Wake (WTW) emissions for alternative versus traditional fuels in shipping

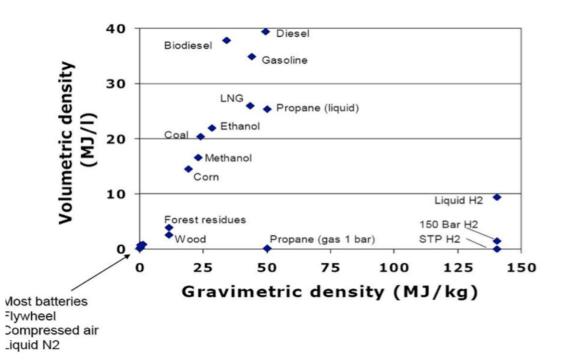
– a Review of
published studies

Ref. Sintef Ocean

NOx-fondet

NOx-fondet

Biogas tap-in benefits for maritime

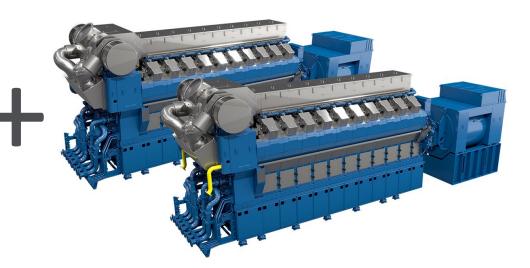


- Biogass can be better than climate neutral, when the resource utilisation prevents uncontrolled biological degradation
- Biogas is 179% renewable (IEA)
- Biogas is waste management reducing GHG
- Biogas and LBG is already industrialised (in other industries)

Why LNG + LBG in maritime

- The climate perspective
- No need for further major R&D steps. Can be implemented now.
- High energy denisity
- Supply and infrastructure for liquified gas to maritime is in place (in Norway)
- Increasing use of LNG in shipping
- Are there any fuel alternatives for large scale coastal fleet implementatation next 10 yrs?

Energy Density



ESS + LNG/LBG is reducing the methane slip problem

Energy storage

Gas engines

- Most methane slip from new gas engines occur at variable engine load
- ESS provides peak shaving and significantly reduces the problem

It is happening! The Hurtigruten case

- Unique technology concept developed by Rolls Royce (Kongsberg)
- Latest generation LNG/LBG engines in combination with ESS
- All ships ready to take shore power
- Major emission reductions
- Significant financial support for the NOx Fund

NOx-fondet

Potential for LBG in Norwegian coastal shipping

	2020	2030
Estimated LNG volumes to shipping in Norway	1800 GWh	1900-3700 GWh (growth dependant)
Estimated biogas volumes in Norway	1200 GWh	3000-5000 GWh (potential)
Estimated potential LBG volumes to shipping in Norway	100 GWh	300-2000 GWh
LBG tap-in potential	~ 10%	10-60%
LNG+LBG potential GHG reduction compared to diesel	35-40%	35-100%

What is needed for more to happen in maritime

- LBG volumes up and prices down (30-50% more expensive than LNG)
- Maritime LBG market must build on the back of LNG
- Continued increase in LNG volumes is needed to obtain sustainable volume levels
- Generate market pull to increase LBG volumes: Politicians must incentivize LBG, not penalize LNG. alternatively GHG emission level requirements

Thank you for your attention!

NOX AE PARA

Thank you for your attention!

NOX AE PARA