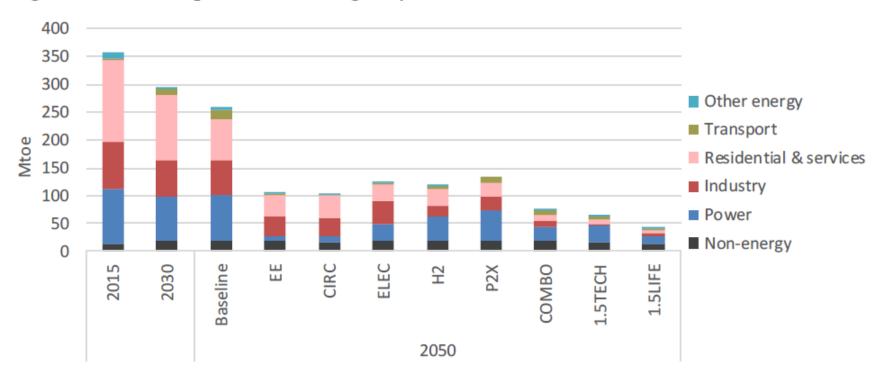


Study on sector coupling

The potential of linking the EU electricity and gas sectors

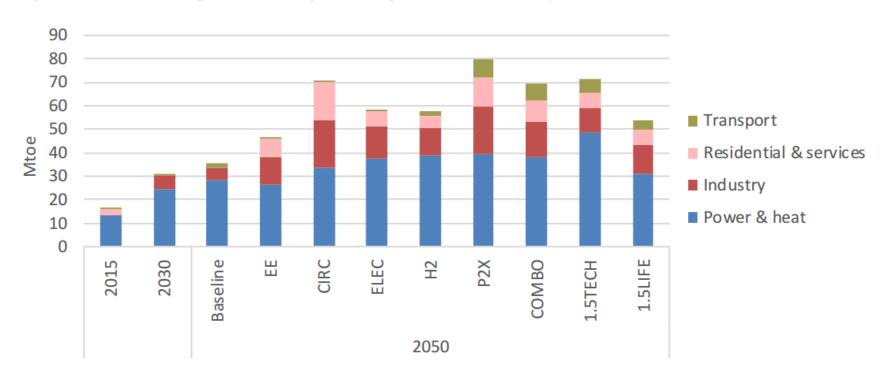
Colin KUEHNHANSS


European Commission DG ENER, Unit B.2

Nordic Biogas Conference 09 April 2019, Oslo

Natural gas consumption

Figure 28: Consumption of natural gas by sector


Note: "Residential and services" also includes agriculture.

Source: Eurostat (2015), PRIMES.

Consumption of biogas

Figure 29: Consumption of biogas and gas from waste by sector

Note: "Residential & services" also includes agriculture.

Source: Eurostat (2015), PRIMES.

EU regional differences

- Different development likely due to:
 - Geographical location, differences in energy demand and supply
 - Differences in the current energy system and infrastructure
- A transition to renewable gases may be more likely in countries with an extensive gas grid
- Electrification may be more attractive in other countries
- Biogas production developing but diverse across Europe
- Most pilot projects for other renewable gases in NW-Europe

Source: CE Delft, 2018

Sector coupling - linking the electricity and gas sectors

ISSUE:

The role of the EU gas sector in the energy transition

OBJECTIVE:

- Identify and assess regulatory barriers/gaps potentially limiting sector coupling and deployment of renewable and low-carbon gases (incl. hydrogen).
- Recommend measures to remove such regulatory barriers/fill gaps – with focus on 3rd Package elements.

Sector coupling study – Methodology

Energy mix

 Qualitative description of a possible future energy mix compatible with the EU's energy targets and climate goals, representing a mix of energy carriers (renewable or decarbonized by 2050)

Role of gas

 Within this energy system, the possible role of gases in the energy transition process

Barriers

 Identification of potential regulatory barriers and gaps which might limit the linking of the electricity and gas sectors and the deployment of renewable and low-carbon gases

Recommen dations

 Options for measures to remove regulatory barriers/fill regulatory gaps with focus on 3rd Package elements, which allow for the participation of relevant technologies and energy carriers

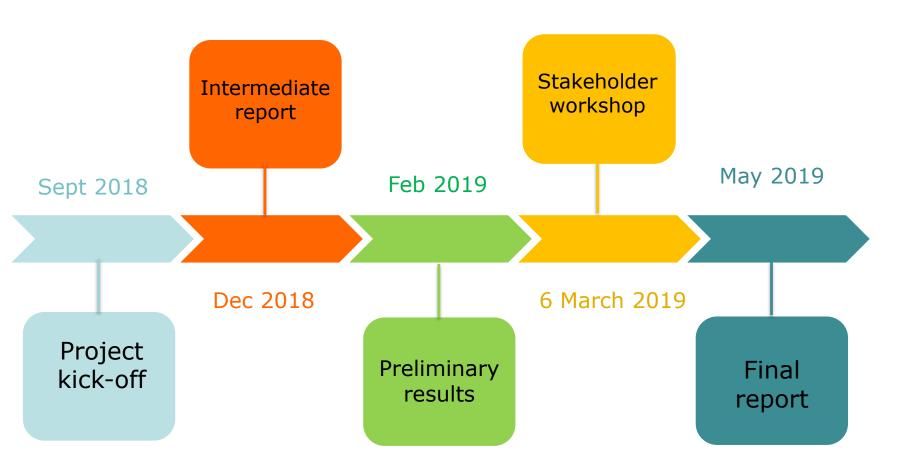
Sector coupling study – Methodology

Practical approach:

- Conceptual benchmark in form of a regulatory strawman
 - Based on consultants' experience, recent studies, stakeholder insights
- Country case studies looking at the following areas in selected Member States to identify potential regulatory barriers/gaps:
 - Technical regulations (e.g. gas quality, injection of renewable gases)
 - Economic regulation (e.g. tariffs, network regulation)
 - Security of supply legislation and flexibility (e.g. internalisation of SoS benefits)
 - Renewable and climate policy instruments (e.g. decarbonisation targets, guarantees of origin)

Sector Coupling Study – State of play

The consultants identified a long list of barriers categorised in five groups:


- Relative immaturity of relevant technologies
- Unlevel playing field due to sector- and technology-specific tariffs and levies
- Focus on natural gas in infrastructure regulation
- Uncoupled and uncoordinated infrastructure planning
- Risk for interoperability across markets and border

Next steps:

- Definition of short list
- Recommendations for measures to remove regulatory barriers/fill gaps with focus on 3rd Package elements

Sector coupling study- Timeline

Thank you!