FUTURE TRENDS IN INCREASING, OPTIMIZING AND GIVING ADDED VALUE TO BIOGASPRODUCTION

Henrik B. Møller, Deparrment of Engineering Århus University

HENRIK BJARNE MØLLER SENIOR RESEARCHER

SOTA AND FUTURE TRENDS

OF ENGINEERING

THE FUTURE BIOGAS PLANT

THE FUTURE BIOGASPLANT - EXAMPLES

Pre-treatment of straw and ligno-cellulosic substrate

- Maceration and grinding
- N-steaming

Ensilage of pre-treated material

- Improved gaspotential with low losses from ligno-cellulosic biomass
- Co-ensilage of straw and other biomasses (optimal mixtures)

Removal of sand

- System for sand removal during operation
- Removal of sand from cattle manure with sand bedding

R

BUSINES

PRE-TREATMENT

NH₃ steaming

Co- ensilage Layers or mixing?

10 APRIL 2019 SEN

HENRIK BJARNE MØLLER SENIOR RESEARCHER

PRE-TREATMENT -NEW BIOMASSES

■ 15 ■ 30 ■ 60 ■ 90 Days

regionmidtjylland

AGRO BUSINESS

PARK

Vi investerer i din fremtid

10 APRIL 2019

HENRIK BJARNE MØLLER SENIOR RESEARCHER

RECYCLING OF FIBERS

- MORE GAS AND LESS EMISSION

40

35

THE FUTURE BIOGASPLANT

-RECYCLING OF FIBERS - ECONOMY

Amount treated (tonnes/year)

REDUCTION OF LOSSES -STABLES

New project aiming at visiting 400 pig producers delivering manure for 30 biogas plants.

SOTA: 18,6 C and 19 days.

Example for biogasplant with 200.000 tons of pig manure +850.000 kr/year from

Future: 1 days and/or 14 C.

HENRIK BJARNE MØLLER SENIOR RESEARCHER UN PETITIN AROLUMDIS SUS

REDUCTION/RECOVERY OF METHANE LOSSES 35 -BIOGAS PLANT v = 0,5858x + 15,279

800

700

600

500

400

300

200

100

Ο

Methane loss (Nm3 CH4/day)

Pre-storage of biomass Biomass is stored at around 4 days at ambient temperature

- Screening of 10 plants
- Long time measurement of 4 plants

Initial screening show around 2% of production lost in pre-tank, long terms show 0,7%. Losses are highly temperature dependent.

HENRIK BJARNE MØLLER 10 APRIL 2019 SENIOR RESEARCHER

16

Udetemperatur [°C]

30,00

REDUCTION/RECOVERY OF METHANE LOSSES -BIOGAS PLANT

ADDED VALUE

BIOGAS IN THE DANISH GAS SUPPLY – HOW HIGH CAN WE GO?

No crops but some areas used for grain are changed to grass

	Low biomass scenario	High biomass scenario
Biomass (technical potential)	Environmentally-optimized	
Animal manure	50%	100%
Green biomass and straw	20%	60%
Household and industrial waste	50%	100%
Sewage sludge	80%	80%
Biogas/biomethanation technology	1) SOTA (State-of-the-art): Average plant (HRT= 33 days and 1 % methane loss. In House methane loss from pig manure is 10% and from cattle 2%.	
	2) GREEN+ (Environmental optimzed) : HRT= 60 days and pre-treatment included. Methane loss before, during and after AD is reduced to 0,5 %.	
	2) METH+ : Green+ including methanation of CO ₂ (90%)	

BIOGAS IN THE DANISH GAS SUPPLY – HOW HIGH CAN WE GO?

Methane (PJ/year)

 Agricultural practize unchanged

Agriculture area changed from grain to grass

+ 10 MIO. TONS PLANEN muligheder for en øget dansk produktion af bæredygtig biomasse til bioraffinaderier

High biomass scenario:

Areas is used for grass/perennial crops in environmental sensitive areas

BIOGAS IN THE DANISH GAS SUPPLY

---Total Danish gas consumption

10 APRIL 2019 HENRIK BJARNE MØLLER SENIOR RESEARCHER

