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ABSTRACT: Snow avalanches are significant natural hazards in mountain areas with a seasonal snow
cover, putting people and infrastructure at risk. Snow avalanche forecasting aims to mitigate this risk,
and detailed numerical modeling of snow stratigraphy is increasingly relied upon. Our work addresses the
potential to improve avalanche forecasting in the high-Arctic by utilizing numerical snowpack modeling forced
by numerical weather predictions and observed snow profiles. The Arctic environment presents challenges,
both in terms of data collection and the expected quality of the numerical weather predictions. In this study,
we validated the performance and usefulness of a model chain consisting of AROME-Arctic, manually
observed snow profiles, and SNOWPACK for a site in Longyearbyen, Svalbard.

We found that shortwave radiation significantly influenced the modeled snow temperature and, thereby, the
metamorphism of the snowpack. Shortwave radiation showed great variability within the gridded AROME-
Arctic output, making the method of linking AROME-Arctic and SNOWPACK critical. The model chain’s
inability to capture wind deposition and the resulting wind slabs has practical implications for operational
avalanche forecasting.

Our research suggests that numerical snowpack modeling forced by numerical weather predictions and
manually observed snow profiles can effectively aid avalanche forecasting in the high-Arctic region. Based on
the promising results, we encourage further exploration of the model chain, both for site-specific avalanche
forecasting and to include the developed model in regional forecasting. As the potential of machine learning
and the utilization of neural networks increases, we see possibilities in expanding the model chain to
incorporate automated conclusions based on the predicted snow profile.

Keywords: snowpack simulations, snow profiles, numerical weather predictions, avalanche forecasting

1. INTRODUCTION

Svalbard has an extensive snow avalanche prob-
lem, posing a threat to infrastructure and houses in
Longyearbyen (Engeset et al., 2020). In response
to the severe snow avalanche accident in Decem-
ber 2015, claiming two lives while in their home in
Longyearbyen, site-specific avalanche warnings for
several avalanche paths were launched. Snow pro-
files are a key element in this operational avalanche
forecasting, and currently this information is pro-
vided through snow observations around the city of
Longyearbyen. However, physically-based models
relying on meteorological data are increasingly
utilized to provide reliable information about the
snowpack in operational avalanche forecasting
world wide (Morin et al., 2020).
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As numerical weather predictions (NWP) continue
to improve alongside advancements in computer
science and technology (Aguado and Burt, 2015),
we anticipate that model chains combining NWP
and snow cover models will become even more
accurate. Progress in computer science is not
only enhancing the accuracy of these models, but
recent research in both the Canadian and Swiss
scientific communities are exploring the potential
of expanding the model chain (e.g., Mayer et al.,
2023; Herla et al., 2024).

In this study, we validated the performance and
usefulness of a model chain consisting of AROME-
Arctic, manually observed snow profiles, and
SNOWPACK for a site in Longyearbyen, Svalbard.
The findings provide a foundation for discussing
and evaluating the possibilities and challenges of
utilizing this model chain in a high-Arctic region, as
well as guiding further developments in avalanche
forecasting in the high-Arctic conditions around
Longyearbyen.



2. STUDY AREA

The archipelago of Svalbard is situated in the Arctic
Ocean, between 74◦and 81◦north. Svalbard is
significantly milder and wetter than other locations
at similar latitudes (Hanssen-Bauer et al., 2019).
The typical winter weather pattern is dominated
by high-pressure systems, which bring stable,
cold, and clear periods, punctuated by warm, wet
low-pressure systems that bring heat and moisture
from the south (Isaksen et al., 2016).

The distinct climate of Svalbard gives rise to snow-
pack features classified as the high-Arctic maritime
snow climate (Eckerstorfer and Christiansen, 2011).
This is caused by low air temperatures and dry
conditions, culminating in a thin and cold snowpack.
Depth hoar usually appears during the early season
and represents a structural weakness throughout
the season (Hancock, 2021) and due to strong
winds and limited vegetation, wind slabs are usually
a leading stratigraphic aspect in the snowpack
(Hancock, 2021; Jaedicke and Sandvik, 2002). Ad-
ditionally, warm winter storms, often accompanied
by rain, also result in widespread ice layering. The
continuous permafrost results in a basal snowpack
temperature well below zero (Humlum et al., 2003).

Several factors make avalanche forecasting the
high-Arctic and Longyearbyen challenging. These
include the short history of observations and,
consequently, a lack of historical data and record-
ings. Additionally, weather forecasts based on
AROME-Arctic are less accurate than those in the
mid-latitudes (Randriamampianina et al., 2021).
The Arctic polar night, stretching from December
to February, also makes visual observation difficult
and increases the risk for observers in the field
(Engeset et al., 2020). On top of these challenges,
the ongoing climate shift and its consequences
for the snow cover influence the snow avalanche
regime. In the forthcoming decades, climate change
is expected to affect the occurrence of all kinds of
snow avalanches in Svalbard, particularly due to the
predicted rise in extreme events involving intense
snowfall or heavy rain on snow. This could lead to
a possible escalation in wet snow avalanches as
well as slush flows (Hanssen-Bauer et al., 2019;
Engeset et al., 2020).

For this study, we selected a study site close to
Longyearbyen to collect the manual snow obser-
vations. The study site was chosen due to limited
associated risks, and a snowpack thickness of
approximately one meter. The location of the study
site is shown in Figure 1.

3. METHODS

3.1 Research design

We established a workflow in which we forced
3.6.0 SNOWPACK from a manually-observed ini-
tiation snow profile with 2.5 km resolution, grid-
ded AROME-Arctic model meteorological data. This
resulted in a visualization of the snowpack devel-
opment, which in turn was qualitatively compared
with a validation snow profile using an objective
snow profile comparison method as validation cri-
teria. This resulted in an objective agreement
score. Lastly, we conducted sensitivity analyses
looking into the coupling between AROME- Arctic
and SNOWPACK.

3.2 AROME- Arctic data collections

We used the MET AROME-Arctic archive data1 to
access the AROME-Arctic data in a NetCDF format.
The extraction of data was done by modifying the
AROME-Arctic extraction program developed by
Frank (2023).

The model runs we used were based on the time
of the observed initiation snow profile, making the
starting time as similar as possible. All 66 hours
of the four model runs we chose were included,
despite the risk of spin-up errors in the early hours
of the data set.

We took careful consideration when transferring the
gridded data from the AROME-Arctic model to the
point data SNOWPACK model. Based on location,
elevation, and local knowledge of the weather pat-
terns we selected grid points A, B, C, and D (Figure
1 as the four most relevant points for performance
evaluation. This was done by using the lowest Root
Mean Square Error (RMSE) (Eq. 1a) and the scaled
RMSE (Eq. 1b) as evaluation criteria, comparing
the modeled weather data with measurements from
Svalbard Airport and Adventdalen Weather Station.

RMSE =

√√
1

n

n∑
i=n

(yi − ŷ)2 (1a)

RMSEscaled =
RMSE − RMSEmin

RMSEmax − RMSEmin
(1b)

RMSE = Root Mean Squared Error
yi = Observed value
ŷ = AROME-Arctic model prediction of yi
n = number of samples
RMSEscaled = Scaled Root Mean Squared Error
RMSEmax = Maximum RMSE for the specific parameter
RMSEmin = Minimum RMSE for the specific parameter

1Link to the MET AROME-Arctic archive

https://thredds.met.no/thredds/catalog/aromearcticarchive/catalog.html


Figure 1: The map displays the AROME-Arctic grid
points in the area around the field site as red dots.
The location of the study site is marked with a blue
dot. The overall location of Longyearbyen is dis-
played in the overview map. The background map
is provided from the Norwegian Polar Institute.

Point A and B were chosen as they were the clos-
est points at representative heights above sea level.
Additionally, Points C and D were examined as they
were both land-based, had a matching aspect, and
had comparable topographic characteristics to the
study site. Points E, F, and G were excluded due
to their locations in water or at substantially higher
elevations.
To assess the quality of the AROME-Arctic perfor-
mance, we collected observed weather parameters
from Svalbard Airport as a reference. This station
was selected due to its proximity to the research site
and its known representativeness of the area. Pa-
rameters unavailable from this weather station were
supplemented with values from the Adventdalen
weather station. Snow surface temperature was not
observed at either of these weather stations or at
any other stations in the area, and was therefore
excluded from the performance analysis.

3.3 Manually observed snow profiles

When collecting the manually observed snow
profiles, we followed the recommendations of the
Norwegian Water Resources and Energy Direc-
torate (NVE) for snow profiles related to avalanche
forecasting, as detailed in Haslestad and Larsen
(2022). We collected data on stratigraphy, hand
hardness, grain shape, grain size, moisture con-
tent, and bulk density. Additionally, for stability
assessment, the Extended Column Test (ECT) was
performed according to the methodology described
by Simenhois and Birkeland (2006). Our dataset
consisted of five manual snow profiles, all collected
with a three-day interval, starting on April 12, 2024,

and ending on April 24, 2024. The profiles were
gathered at a consistent location, with movement
limited to finding undisturbed snow.

3.4 SNOWPACK setup

The SNOWPACK output time step was set to
60 minutes to match the hourly resolution of the
AROME-Arctic input data. The atmospheric condi-
tions were assumed to be neutral for all four model
periods. The energy exchange at the surface was
governed by a shifting boundary condition, switch-
ing between the Dirichlet and Neumann boundary
conditions depending on the surface temperature.
The water transport model was set to Bucket, and
the SNOWPACK stability evaluation was not utilized.
We used the program’s default parameters for all
other parameters.

3.5 Model chain validation

We qualitatively assessed the performance of
the model output using an objective snow profile
comparison algorithm. The algorithm involved
manual layer mapping according to the principles
outlined in Herla et al. (2021), where the mapping
was performed between the simulated snow profile
at the final time step and the validation snow
profile. Based on the layer mapping, we applied
the goodness-of-fit criteria presented in Herla et al.
(2021), while also incorporating additional elements
from Lehning et al. (2001) to achieve an objective
agreement score for the parameters of stratigraphy,
snow temperature, grain size, and grain shape.
These were combined into a total agreement score.
The comparison scheme is described in detail in
Lyche et al. (2023). The total representativeness
is expressed as a number between zero and one,
where one represents a perfect replication and zero
indicates no resemblance.

3.6 Sensitivity analysis

To assess the model’s sensitivity to the chosen
AROME-Arctic grid point, we ran SNOWPACK
separately on the output of all four relevant
AROME-Arctic grid points identified. All other
parameters, including the model period, input snow
profiles, and settings in SNOWPACK, were kept
constant. We qualitatively evaluated the results of
these sensitivity analyses.

4. RESULTS

4.1 AROME-Arctic model performance

Divergent data outputs were observed from the four
selected AROME-Arctic grid points. An overview
of air temperature, precipitation, wind speed, and



net shortwave radiation from all four model periods,
along with observed data from the Svalbard Airport
and Adventdalen weather stations, is presented
in Figure 2. Notably, the net shortwave radiation
parameter exhibits the most substantial variance,
with significant differences between the grid points.
Overall, no signs of model spin-up errors were
detected. However, it is important to note that
all four grid points from AROME-Arctic predicted
surface temperatures above 0 ◦C in periods with
positive air temperatures, which is a non-physical
result (Dingman, 2015).

Figure 2: The figure presents a general impression
of the variance and order of scale for hourly mea-
sured air temperature, precipitation, wind speed,
and net shortwave radiation from all four grid point
as well as Svalbard Airport and Adventdalen.

The numerical assessment of performance (Figure
3) revealed a similar output across all four grid
points for the parameters of air temperature and

longwave radiation. Greater discrepancies were ob-
served for wind speed, relative humidity, and pre-
cipitation. The greatest divergence was evident in
the net shortwave radiation parameter. Point D dis-
played the lowest RMSE value for six out of five pa-
rameters, with relative humidity being the exception.
Based on the selection criteria, point D was utilized
for further modeling.

Figure 3: RMSE and scaled RMSE for each
AROME-Arctic parameter across all four grid points.
A lower score denotes a more accurate replication
of observed events

4.2 The manually observed snowpack

The initial state of the snowpack exhibited charac-
teristics typical of a high-Arctic maritime environ-
ment, with 12 distinct stratigraphic layers identified
within a snow depth of 100 cm. Throughout the
study period, the snow cover underwent several
types of metamorphosis. On April 12, 2024, we
detected a melt/freeze crust at the surface, which
experienced both melting and refreezing during
the first half of the field period. Additionally, the
layer of decomposing and fragmented precipitation
particles beneath the ice layer transformed into
faceted crystals. Between April 18 and April 21, a
new layer of wind-affected snow developed at the
surface.



4.3 SNOWPACK simulations

Figure 4 illustrates the SNOWPACK model’s tempo-
ral tracking of grain shape across all four model pe-
riods. Over the four model periods, the forecast pre-
dicted melt/refreeze, development of faceted crys-
tals, precipitation, rounding, and faceting. The
model chain forecasts periods of rapid warming and
cooling of the snow temperature.

4.4 Sensitivity

When studying the conducted sensitivity analysis,
it is apparent that the model chain’s output varies
significantly depending on the grid point used. The
differences are most pronounced for grid point A,
which forecasts a warmer snowpack, leading to in-
creased melt and different metamorphic processes.
This aligns with the notable deviations observed in
four grid points modeled shortwave radiation.

4.5 Model chain validation

Based on the validation criteria, our results yielded
total agreement scores across the four model
periods ranging between 0.85 and 0.91, where 1
represents a perfect replication. The total agree-
ment score averages a value of 0.88. The results
are given in Table 1.

Table 1: The results of the model validation. The
agreement score for each property and the total
score for each model run are provided.

Model Period κstrat κtemp κsize κshape κtot
1 0.56 0.96 0.90 1 0.85
2 0.83 0.68 0.91 1 0.86
3 0.92 0.88 0.96 0.89 0.91
4 0.85 0.74 0.98 1 0.89
Mean value 0.79 0.82 0.94 0.97 0.88

5. DISCUSSION

5.1 AROME-Arctic as data source for SNOWPACK

We argue that the similarity between the fore-
casted and observed weather, coupled with the
high agreement score shown in Table 1, suggests
that AROME-Arctic can produce robust results for
SNOWPACK modeling. This finding is consistent
with the results of Myhre (2018); Zweigel et al.
(2021). However, despite AROME-Arctic’s high
resolution in the NWP context, a grid resolution
of 2.5 km is coarse for site-specific avalanche
forecasting. This mesh size makes AROME-Arctic
likely to miss small-scale local phenomena, indi-
cating that incorporating it into the model chain
requires careful consideration. Our evaluation
criteria identified a surprising AROME-Arctic grid

point as the best-performing data source, despite
it being the grid point located farthest from the
study site (Figure 1). Further, when comparing
the four grid points in Figure 3, it is clear that
the performance is highly variable. Whereas
the variance in wind speed can be explained by
different topographic channeling effects from the
valley systems around Longyearbyen, the strong
variability in bias for the net shortwave parameter
is unexpected. There are local features, such as
cloud coverage, that would influence this parameter
and further result in differences between the four
simulations. However, the consistent biases over
the model period for all four grid points contradict
the theory of differences in simulated local cloud
coverage, as this phenomenon occurs over a
shorter temporal scale. Due to the consistency in
outgoing longwave radiation, drastic differences in
AROME-Arctic interpreted surface properties are
not likely. We find that explaining the shortwave
radiation dynamics in AROME-Arctic is nontrivial
due to the complex interactions between cloud
coverage, reflection, and incoming solar radiation.
Furthermore, short-wave radiation is known to be a
challenging parameter for NWP to model (Gregow
et al., 2020), and a model error can therefore not be
ruled out.

Additionally, the AROME-Arctic model predicted
snow surface temperatures above 0◦C during
model periods 1 and 2, when the air temperature
rose above 0◦C. We expect this to indicate that
AROME-Arctic does not recognize that the surface
is snow-covered. However, the effects of this error
were limited due to the shifting boundary conditions
in SNOWPACK. As we used shifting boundary
conditions, Neumann boundary conditions were
applied when surface temperatures exceeded -1◦C.
Nevertheless, this represents a weakness, as it
increases uncertainty regarding the quality of the
simulated surface temperature.

5.2 From grid to point value

Our findings demonstrate that in the maritime Arctic
climate, characterized by highly localized and com-
plex terrain features such as valleys, glaciers, and
mountains, the selection of a grid point for snowpack
modeling requires thorough investigation. There-
fore, further exploration of various approaches will
be highly interesting and essential in future stud-
ies. We recommend validating the AROME-Arctic
model output before integrating it with the SNOW-
PACK model, as this could enhance the likelihood of
high performance and improve the credibility of the
snowpack predictions.”



Figure 4: The simulated grain shape evolution over four model periods. The horizontal black lines indicate
snow depth, with vertical lines positioned at every three-hour intervals within the model periods. The start
time of each simulation is denoted by the date and time at the beginning of the model period.

Figure 5: Simulated grain shape development over the four model periods when SNOWPACK was forced by
AROME-Arctic output from point A.

5.3 Predicting the development of the snowpack

AROME-Arctic and SNOWPACK model chain
forced by manual snow observations demonstrated
considerable success in predicting the snowpack’s
development throughout all four modeling periods.
The average agreement score of 0.88 suggests
a strong correspondence between modeled and
observed results (Table 1), signaling a high level
of accuracy in all four conducted simulations. The
agreement score of 0.97 for grain shape strength-
ens this claim, as grain type, according to Herla
et al. (2021), constitutes one of the most crucial
parameters in such simulations. It’s noteworthy that

the stratigraphic parameter indicated the lowest
performance, with especially weak performance
for the first modeling period. However, the inter-
pretation of these findings must take into account
the conditions and context of the observed snow
profiles that served as the basis for the initiation
and validation of model parameters.

Further, we found that this model chain showed
sensitivity towards shortwave radiation, as this
parameter both varied between the grid points, as
well as significantly influencing the modelled snow
temperature and metamorphism of the snowpack.



5.4 Implications for avalanche forecasting

For site-specific avalanche forecasting in Longyear-
byen, the model chain has provided an accurate
forecast of the snow cover development in different
snow development scenarios. The model output
is both a visualization, as well as an independent
opinion on the snow cover development. This
can be compared with the human forecasters’
evaluations and therefore might strengthen the
performance of avalanche forecasting.

This claim is strengthened by the model chain’s
ability to accurately reproduce the observed weak
layers during the field period. Additionally, the
observed snow profiles included stability tests.
All layers that yielded results in these tests were
captured by the model chain’s output, indicating
that the avalanche forecaster would be provided
with precise information on the most critical layering
during these model periods. This strongly supports
the model chain’s usefulness in a forecasting
scenario.

However, as SNOWPACK is a one-dimensional
model, it has the inherent limitations of this type of
modeling, and topographic effects as snowdrift are
not captured. Although both model periods 2 and 3
yielded high agreement scores, a visual inspection
reveals that these simulations might be problematic
for avalanche forecasting. Both periods ended with
an observed wind slab, which was not captured
in the simulations. Wind slabs are a common
avalanche problem in Longyearbyen, and while the
stability tests conducted indicate that this was not
the primary avalanche problem or concern during
these periods, the inability to capture this process
is a significant drawback.

During model period 3, the model chain simulated
a layer of surface faceted crystals instead of the
wind slab. If surface faceted crystals are subse-
quently buried by wind-deposited snow or new pre-
cipitation, they could quickly become a significant
avalanche problem. This error could potentially mis-
lead avalanche forecasters. However, the relatively
frequent updates using observed profiles help to
limit the extent and consequences of these misinter-
pretations. In light of these findings, we recommend
revisiting the model chain setup. Currently, the
model chain is run for a full 66-hour lead time based
on one complete model run of AROME-Arctic. By
adjusting the criteria for updating the model state
with observed snow profiles to be linked to specific
weather events, the model chain could improve both
its capacity and accuracy. Based on SNOWPACK
documentation and the observed weaknesses over

the four model periods, high wind speeds and pre-
cipitation could be used as triggering mechanisms
for updates. For periods with calmer conditions, less
frequent manual snow profiles would be necessary.

6. CONCLUSION AND OUTLOOK

Our overall goal for this study was to evaluate the
performance and usefulness of a model chain con-
sisting of AROME-Arctic, manually observed snow
profiles, and SNOWPACK for a site in Longyear-
byen, Svalbard. To conclude, we found that:

• During the fourteen-day test period, the model
chain accurately forecasted the development of
the snow stratigraphy, as well as correctly pre-
dicted the applicable avalanche problems.

• Great caution should be exercised when link-
ing the gridded AROME-Arctic model output
to SNOWPACK, as the accuracy of the NWP
weather output has been shown to vary signifi-
cantly even between adjacent grid points.

• Both AROME-Arctic and SNOWPACK demon-
strated sensitivity to short-wave radiation,
which should be given special consideration
when setting up an operational model chain.

• Updating the model chain with manually ob-
served snow profiles based on weather events,
rather than on a fixed schedule, would mitigate
the limitations of SNOWPACK being a one-
dimensional model.

• The overall strong performance of the model
chain indicates that it could be a highly effec-
tive tool for operational avalanche warning in
the High-Arctic region, given availability of suf-
ficient observations.

Our findings suggest that, despite the challenges
of data availability in the Arctic region, snowpack
modeling based on local NWP provides promising
results as an operational tool. These results support
investing resources into exploring its incorporation
into operational forecasts, as well as further devel-
oping and automating the process.

Highly inspired by the work conducted in the
Canadian snow science community e.g. Herla et al.
(2021, 2023), we encourage exploring the use of
the model chain to support the regional forecast
around Longyearbyen as well. In a time when the
potential of machine learning and neural networks is
growing, high-quality data is desirable and powerful.
Based on our validation study, we find the data
output to be of high quality and see opportunities to
expand the model chain by incorporating automated
conclusions derived from these models’ predictions
of snowpack development. We strongly recommend
further investigation of these possibilities.
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