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1. Introduction 

 

Since the 1990s, promoting industrial clusters has become, in the eyes of many 

researchers and policy makers, critical for realizing regional innovation and its 

resultant growth. Following the industrial clusters’ iconic success in Silicon Valley and 

its adoption by European countries, Japan’s Ministry of Economy, Trade and Industry 

(METI) launched 19 cluster projects nationwide as part of the Industry Cluster Project 

in 2001. Numerous policy reports and related papers offer a comprehensive review of 

Japan’s cluster initiatives and feature a number of its success stories (e.g., Ishikura et 

al. 2003; METI 2009; Ganne and Lecler 2009). While invaluable, the insights offered by 

some studies are difficult to generalize due to known limitations of the case study 

approach. Very few studies make use of sufficiently large samples to offer quantitative 

evidence in response to open questions (Porter, 2003; Duranton et al., 2010). Where are 

the well- or poorly-functioning clusters located? What is the geographical boundary of 

these clusters? What is the industrial composition of these clusters? 

  This study aims to provide basic quantitative facts on the clusters with demonstrated 

gains in productivity with a particular focus on the transportation equipment cluster 

and its related industries in Japan. The Japanese transportation equipment industry 

(which includes automobile, railway rolling stock, ship, and aircraft manufacturing) 

uses cutting edge technologies and is expected to play an important role in the 

development of the regions that have been designated to the cluster projects. Because of 

the characteristics of vertical and hierarchical organizational structures, consistent 

clustered productivity growth has been associated with extensive knowledge spillovers 

among related industries. 

  There is a growing body of work confirming that externalities from knowledge 

spillovers associated with industrial agglomeration drive urban and regional economic 

growth. Following Glaeser et al.’s (1992) focus on industrial scope, subsequent empirical 
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studies have investigated the role that these dynamic externalities play across various 

geographical scales and industrial aggregations. We aim to contribute to this literature. 

First, we are able to link the structure of the local clusters to company productivity. The 

approach that we employ is more consistent with endogenous growth theories than with 

studies based on the conventional employment approach established through Glaeser et 

al.’s (1992) seminal work. 

  Second, we capture each company’s productivity growth. To that end, we use the 

Malmquist total factor productivity (TFP) index. Conventional methods, based on the 

Törnqvist TFP index or the Solow residual, assume the optimizing behavior of 

production. In comparison, an advantage of the Malmquist TFP index is that it can be 

applied without any ad hoc adjustment to the input data even if the varying intensity of 

input usage conceals true productivity (Nemoto and Goto 2005).  

  Finally, the physical location of companies is used to visualize the estimated results of 

the technical change component of the TFP index on maps using geographic information 

systems (GIS). This approach for detecting clusters allows us to use distance to uncover 

more realistic geographical areas and decaying patterns compared to research that 

relies on political borders or predetermined geographical units (Rosenthal and Strange 

2005; Catini et al. 2015). The findings may be used to infer the path of knowledge 

transfer that contributes to productive growth and establish effective regional policies. 

 

 

2. Calculation of Productivity Change 

 

In this study, the Malmquist TFP index is decomposed into three components: technical 

change, efficiency change, and scale change. The technical change component measures 

the degree of the shift in the production frontier which is attributable to technological 

progress and changes in production circumstances. A focus on the technical change 

component is suitable when examining the relationship between knowledge spillovers 

in clusters and productivity growth that is gained through innovation. The large 

number of observations in our data sets allows us to apply an econometric approach to 

estimate the required distance functions for deriving the Malmquist TFP index. 

To perform the Malmquist TFP index computations, Fuentes et al. (2001) and Orea 

(2002) specify the translog distance function method. In a single-output production 

frontier case, the general multi-output distance function is summarized by the following 

translog stochastic production frontier:  
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where 𝑦𝑖𝑡 is the output of the i-th firm in the t-th year; 

𝑥𝑛𝑖𝑡 is a n-th input variable (n=1, 2, 3);  

t is a time trend representing technical change; 

the βs are unknown parameters to be estimated; 

the 𝑣𝑖𝑡s are random errors assumed to be iidN(0, 𝜎𝑣) . 

The model specification by Battese and Coelli (1995) assumes the 𝑢𝑖𝑡s, which accounts 

for technical inefficiency in production, is independently distributed as truncated at 

zero of the N(𝒛𝒊𝒕𝜹, 𝜎𝑢). 𝒛𝒊𝒕 is a vector of variables that may influence the efficiency of a 

firm, and 𝜹 is the corresponding vector of parameters to be estimated. 

   In this parametric case, the technical change index for the i-th firm between periods 

s and t is calculated as the geometric mean of the partial derivative of ln𝑦𝑖𝑡 with 

respect to time; 

𝑇𝐶𝑖,𝑠𝑡 = exp [
1

2
(
𝜕 ln 𝑦𝑖𝑠
𝜕𝑠

+
𝜕 ln 𝑦𝑖𝑡
𝜕𝑡

)] .          (2) 

The technical efficiency change can be measured 

𝑇𝐸𝑖𝑡 = 𝐸[exp(−𝑢𝑖𝑡) |𝑒𝑖𝑡]            (3) 

where 𝑒𝑖𝑡 = 𝑣𝑖𝑡 − 𝑢𝑖𝑡. Then, the technical efficiency chance index is calculated as 

𝑇𝐸𝐶𝑖,𝑠𝑡 =
𝑇𝐸𝑖𝑡
𝑇𝐸𝑖𝑠

.        (4) 

The scale efficiency change can be measured based on the scale elasticity value 𝜀𝑛𝑖𝑠 

with respect to the n-th input (Orea, 2002); 

𝑆𝐸𝐶𝑖,𝑠𝑡 = 𝑒𝑥𝑝 [
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2
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where 𝑆𝐹𝑖𝑠 = (𝜀𝑖𝑠 − 1) 𝜀𝑖𝑠⁄ , 𝜀𝑖𝑠 = ∑ 𝜀𝑛𝑖𝑠
𝑁
𝑛=1  and 𝜀𝑛𝑖𝑠 = 𝜕ln𝑦𝑖𝑠 𝜕ln𝑥𝑛𝑖𝑠⁄ . Once we have 

satisfactorily measured these productivity change components, we can measure the 

overall TFP change for the i-th firm over periods s to period t: 

       𝑇𝐹𝑃𝑖,𝑠𝑡 = 𝑇𝐶𝑖,𝑠𝑡 × 𝑇𝐸𝐶𝑖,𝑠𝑡 × 𝑆𝐸𝐶𝑖,𝑠𝑡. (6) 

 

 

3. Empirical application 
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3.1. Data 

 

  We use data extracted from the Census of Manufactures provided by the METI. Our 

data covers the time period 2004–2012. It includes information on firms with no less 

than 30 employees. The Malmquist TFP index and its decomposition are calculated for 

firms classified into the industries that manufacture motor vehicles and bodies 

(coachwork) for motor vehicles (4-digit industrial classification 3011 and 3012: 1,967 

observations); and parts and accessories for motor vehicles (industrial classification 

3013: 27,826 observations). The data also include information on each firm’s location.  

  We consider three types of inputs and one output. The inputs include intermediate 

inputs (constant value in 2000), including raw material, electricity, and consignment 

costs; firms’ tangible fixed assets (constant in 2000); and firms’ total number of workers 

measured as a count of self-employed, family workers, and full-time employees 

multiplied by sectoral working hours. The output is a firm’s total sales (constant in 

2000) as measured by the value of manufactured shipments, processing charge, and 

other sources of income. 

 

3.2. Estimation results 

 

  Maximum-likelihood estimates of the translog stochastic frontier model for 

downstream factories (manufacturers of motor vehicles and vehicle’s body) are 

presented in Table 1. Note that the estimations were performed with variables 

expressed in deviations with respect to average values. Hence, the first-order 

parameters are to be interpreted as the elasticities at the sample means. All elasticities 

of outputs with respect to each input are significant and positive. In addition, many of 

the other cross terms are also significant. 

 

(Table 1 around here) 

 

  The estimated parameters can be used to calculate annual percent change measures 

of technical change (TC), technical efficiency change (TEC), scale efficiency change 

(SEC), and overall TFP change for each firm over the period under study. These indices 

are averaged across firms and then converted into cumulative percent change reported 

in Figure 1. 

 

(Figure 1 around here) 
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  The results shown in Figure 1 reveal several interesting findings. Overall, TFP 

decreases from 2004 to 2009, a trend that is driven primarily by the rapid decline of 

TEC. The business environment for export oriented manufacturing sectors such as 

motor vehicle companies was extremely harsh during this period. It is likely that TEC 

declined as a consequence of the yen’s rapid appreciation and the Lehman shock. 

Furthermore, the industry was negatively affected by a massive recall on defective 

braking systems issued by Toyota Motor Corporation at the end of 2009. This 

accelerated the contraction of Toyota’s sales and prompted a decline in TEC in all 

auto-related industries. The shock of the great earthquake that hit the Pacific coastal 

regions in 2011 contributed to a decline in TEC, but it recovered soon. However, TC 

experienced a steadily expanding trend over the same period, playing a leading role in 

the improvement of overall TFP especially in 2010 and later. The size of a firm’s average 

SEC is smaller than the other productivity components. 

  As with the estimation for downstream industries, we estimated the translog 

stochastic frontier model for upstream industries (manufacturers of parts and 

accessories). Since the size of companies in these industries varies significantly, we 

estimate the model in cohorts. The model is estimated for firms with less than 100 

employees, firms with 100 to 300 employees, and firms with more than 300 employees 

as of 2004. Table 2 shows the estimation results for the sample of firms with 100 to 300 

employees.4 Based on the estimated parameters, annual percent change measures of 

TC, TEC, SEC, and overall TFP are calculated for each firm. Aggregate cumulative 

percent change measures of productivity components are shown in Figure 2. 

 

 (Table 2 around here) 

 

(Figure 2 around here) 

 

  Figure 2 shows that the productivity change of parts and accessories manufacturers 

is similar to that of downstream assembling factories. From 2004 to 2008, overall TFP 

increase is led by significant upward TC. In 2009, TFP plunges due to the effect of TEC. 

 

3.3. Spatial patterns of technological change 

 

                                                  
4 The signs and the significance of the estimated coefficients in the model using the other samples are 

similar to the result shown in Table 2. 
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Section 3.2 discusses sample average patterns of productivity change, which are based 

upon aggregate results. TC, TEC, SEC, and overall TFP change can be calculated for 

each firm over the period under study. In particular, we focus on the TC component of 

TFP, which is the movement of firm’s production frontier and comes from technological 

advances. Then, using the address information of observations, we investigate the 

relationship between the size of TC and its geography.  

  Figure 3 shows the location of manufacturers of motor vehicles and vehicle’s body 

(red), and manufacturers of parts and accessories with 100 or more employees (green). 

The firms that achieve higher degree of TC are shown in a darker shade of green.5 

Figure 3 shows that relatively large-scale parts and accessories manufacturers that 

experienced significant improvement in their frontiers tended to be located near 

downstream assembling factories.  

  Figure 4 shows the location of manufacturers of motor vehicles and vehicle body (red), 

and manufacturers of parts and accessories with less than 100 employees (purple). The 

firms that achieve higher degree of TC are shown in darker purple. The small-scale 

parts and accessories manufacturers, which are located near downstream assembling 

factories, also realized high production frontier improvements. These findings suggest 

that the upstream parts and accessories firms with high TC improvements are closely 

related to downstream assembling firms. Therefore, geography may determine firms’ 

capacities to achieve technological progress. 

   

(Figure 3 around here) 

 

(Figure 4 around here) 

 

 

4. Conclusion  

  

  This study offers basic quantitative facts about the clusters that demonstrate growth, 

focusing on transportation equipment industries in Japan. To specify the location and 

extent of the well-functioning auto-related clusters, we first calculate the Malmquist 

TFP index to evaluate the change in firm productivity. In the TFP index, the TC 

component that is not affected by exogenous demand shocks can be measured through 

parametric estimation. A focus on the TC component of the index is suitable to examine 

the relationship between knowledge spillovers in clusters and productivity growth 

                                                  
5 The top 25% firms of the sample in terms of the size of TC are shown in darker green. 
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through innovation. The estimated results of the TC component are visualized on maps 

using a GIS. This approach for detecting clusters allows us to use spatial features to 

uncover more realistic geographical areas and decaying patterns compared to research 

that relies on political borders or predetermined geographical units. The results show 

that the final assembly or the large-scale downstream factories have achieved steady 

frontier improvements. Manufacturers of parts and accessories that are located near 

large-scale assembling factories also realized relatively large improvements in 

technological progresses. These findings suggest that geography is important for firms 

to realize technological progress. 

  In future research, statistical methods will be employed to evaluate the productivity 

of growth clusters (some preliminary results will be reported at the conference). The 

role of other industries that are closely related to automobile manufacturers also needs 

to be considered. Further, a comparative analysis on industrial clusters between Japan, 

EU, and the US may be useful to study effective cluster policies and to promote regional 

economic growth. 

 

 

References 

Catini R., Karamshuk D., Penner O. and Riccaboni M. (2015) Identifying geographic 

clusters: A network analytic approach, Research Policy 14. 

Duranton G., Martin P., Mayer T. and Mayneris F. (2010) The Economics of Clusters, 

Oxford University Press, New York. 

Fuentes H.J., Grifell-Tatje E. and Sergio P. (2001) A parametric distance function 

approach for Malmquist productivity index estimation, Journal of Productivity 

Analysis 15, 79–94. 

Ganne B. and Lecler Y. (Eds) (2009) Asian Industrial Clusters, Global Competitiveness 

and New Policy Initiatives. World Scientific Publishing, Singapore. 

Glaeser E. L., Kallal H. D., Scheinkman J. A. and Shleifer A. (1992) Growth in cities, 

Journal of Political Economy 100, 1126–1152. 

Ishikura Y., Fujita M., Maeda N., Kanai K. and Yamasaki A. (2003) Strategy for Cluster 

Initiatives in Japan (Nihon no Sangyo Kurasuta Senryaku). Yuhikaku, Tokyo (in 

Japanese). 

Ministry of Economy, Trade and Industry (2009) Industrial Cluster Project 2009. 

Ministry of Economy, Trade and Industry, Tokyo. 

Nemoto J. and Goto M. (2005) Productivity, efficiency, scale economies and technical 

change: A new decomposition analysis of TFP applied to the Japanese prefectures,      



DRAFT PAPER (Do not quote or distribute beyond the conference) 

 

Journal of the Japanese and International Economies 19, 617–634. 

Orea L. (2002) Parametric decomposition of a generalized Malmquist productivity index, 

Journal of Productivity Analysis 18, 5–22. 

Porter M. E. (2003) The economic performance of regions, Regional Studies 37, 549–578. 

Rosenthal S. S. and Strange C. W. (2005) The geography of entrepreneurship in the New 

York metropolitan area, FRBNY Economic Policy Review, 29–53. 

  



DRAFT PAPER (Do not quote or distribute beyond the conference) 

 

Table 1. Estimates of the stochastic frontier model for the downstream industries 

 

* Significant at the 10 % level; ** at the 5 % level; *** at the 1 % level 

 

  

Coefficients in determinstic Coefficients in efficiency

compornents componenet (uit)

Constant 1.6306 *** Constant 1.7424 ***

ln X 0.2830 *** ln X×DLarge 0.2830 *** ln X -2.5113 ***

ln K 0.2523 *** ln K×DLarge 0.2523 *** ln K 0.1461 ***

ln L 0.7542 *** ln L 0.2650 ***

t 0.0687 *** t×DLarge 0.0537 *** t 0.0416 ***

(ln X)
2 0.0479 ***

(ln X)
2
×DLarge

0.0479 ***
(ln X)

2 -0.9631 ***

ln X×ln K -0.0431 *** (ln X×ln K)×DLarge -0.0431 *** ln X×ln K -0.0135

ln X×ln L -0.0644 ** ln X×ln L 0.1177 ***

ln X×t -0.0005 (ln X×t)×DLarge -0.0005 ln X×t 0.0063 *

(ln K)
2 0.0025 (ln K)

2 -0.0193

ln K×ln L 0.1292 *** (ln K×ln L)×DLarge 0.1292 *** ln K×ln L 0.0796 ***

ln K×t 0.0053  (ln K×t)×DLarge 0.0053  ln K×t 0.0009  

(ln L)
2 -0.1858 **

(ln L)
2
×DLarge

-0.1858 **
(ln L)

2 -0.3688 ***

ln L×t 0.0134 (ln L×t)×DLarge 0.0134 ln L×t -0.0010

t
2 -0.0078 t

2
×DLarge

-0.0078 t
2 -0.0064 *

D2009 -0.0559 ***

D2010 -0.0362 *

D2011 0.0036

σv
2 0.2938 σu

2 0.0920

1.7695

Log-likelihood 299.69

# of observations 1967

 =𝜎𝑢 𝜎𝑣⁄
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Table 2. Estimates of the stochastic frontier model  

       for parts and accessories manufacturers 

 

         * Significant at the 10 % level; ** at the 5 % level; *** at the 1 % level 

 

  

Coefficients in determinstic Coefficients in efficiency

compornents componenet (uit)

Constant 0.8539 *** Constant 1.2401 ***

ln X 0.1111 *** ln X -0.4007 ***

ln K 0.1680 *** ln K 0.1327 ***

ln L 0.6247 *** ln L 0.1908 ***

t 0.0532 *** t 0.0078 ***

(ln X)
2 0.3759 ***

(ln X)
2 -0.0326 ***

ln X×ln K -0.0644 *** ln X×ln K 0.0103 ***

ln X×ln L -0.2910 *** ln X×ln L -0.0068

ln X×t -0.0229 *** ln X×t -0.0003

(ln K)
2 0.0272 ***

(ln K)
2 0.0011

ln K×ln L 0.0107 ln K×ln L -0.0034

ln K×t 0.0052 *** ln K×t 0.0012 **

(ln L)
2 0.2527 ***

(ln L)
2 0.1466 ***

ln L×t -0.0071 ln L×t 0.0080 ***

t
2 -0.0040 ***

t
2 -0.0016 **

D2009 -0.0674 ***

D2011 -0.0165 **

σv
2 0.1841 σu

2 0.1830

0.9941

Log-likelihood 573.78

# of observations 7868

 =𝜎𝑢 𝜎𝑣⁄
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Figure 1. Change in productivity for the downstream industries 

 

 

Figure 2. Change in productivity for parts and accessories manufacturers 
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Figure 3. Spatial pattern of technological change for parts and accessories 

manufacturers with 100 or more employees 
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Figure 4. Spatial pattern of technological change for parts and accessories 

manufacturers with less than 100 employees 

 


