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Abstract

The practice of spatial econometrics revolves around a weighting matrix, which is often supplied

by the user on previous knowledge. This is the so called W issue and, probably, the aprioristic

approach is not the best solution. However, we have to concur that, nowadays, there few alternatives

for the user. Under these circumstances, our contribution focuses on the problem of selecting a

W matrix from among a finite set of matrices, all of them deemed appropriate for the case. We

develop a new and simple method based on the Entropy corresponding to the distribution probability

estimated for the data. Other alternatives to ours, which are common in current applied work, are

also reviewed. The main part of the paper consists of a large Monte Carlo resolved in order to

calibrate the effectiveness of our approach compared to the others. A case study is also included.
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1 Introduction

Let us begin with a mantra: the weighting matrix is the most characteristic element in a spatial model.

This commonplace is probably true and we have no problem in asserting once again; in fact, it is the reason

for our work. As known, spatial models deal primarily with phenomena such as spillovers, trans-boundary

competition or cooperation, flows of trade, migration, knowledge, etc. in very complex networks. Rarely

does the user know about how these events operate in practice. Indeed, they are mostly unobservable

phenomena which are, however, required to build the model. Traditionally the gap has been solved by

providing externally this information, in the form of a weighting matrix. By the way, we must recognize

that the W alternative is not the unique solution to deal with such kind of unobservables (Oud and

Folmer, 2008, for example, develop a latent variables approach that does not need of W), but is the most

simple.

Hays et al. (2010) give a fairly sensible explanation of the generalization of a predefined W. Network

analysts are more interested in the formation of networks, taking units attributes and behaviors as given.

This is spatial dependence due to selection, where relations of homophily and heterophily are crucial.

The spatial econometricians are more interested in what they call ’computing the effects of alters actions

on ego’s actions through the network’; in this case, the patterns of connectivity are taken as given. This

form of spatial dependence is due to influence and the notions of contagion and interdependence are

crucial. So, if the network is predefined in our work, why not supplying it externally?.

However, popularity does not mean absence of dispute; in fact, the W issue has been often cause of

dispute. In the early stages of the discipline, terms like ’join’ or ’link’ were very common (for instance, in

Moran, 1948, or Whittle, 1954). The focus at that time was mainly on testing for the presence of spatial

effects, for which is not so important the specification of a highly detailed weighting matrix; contiguity,

nearness, rough measures of separation can be appropriate notions for that purpose. The work of Ord

(1975) is crucial in the evolution of this debate because of its strong emphasis on the task of modelling

spatial relationships. It is evident that the weights matrix needs more attention if we want to avoid

estimation biases and wrong inference. Anselin (1988, 2002) puts the W issue in the center of the debate

about specification of spatial models. However, after decades of practicing, the W issue is still rather

obscure. Our purpose is to offer some help to the user in the crucial decision of choosing a weighting

matrix for her equation.

The objective is clear: we have to ’determine which ... units in the spatial system have an influence

on the particular unit under consideration ... expressed in notions of neighborhood and nearest neighbor ’

relations, in words of Anselin (1988, p.16) or ’to define for any set of points or area objects the spatial

relationships that exist between them’ as stated by Haining (2003, p. 74). The problem is how should

it be done. Roughly speaking, we may distinguish two approaches to the building of W: (i) specifying
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W exogenously; (ii) estimating W from data. The exogenous approach is by far the most common and

includes, for example, use of a binary contiguity criterion, k-nearest neighbours, kernel functions based

on distance, etc. The second approach uses the topology of the space and the nature of the data, and

takes many forms.We find ad-hoc procedures in which a predefined objective guides the search such as the

maximization of Moran’s I in Kooijman (1976) or the local statistical model of Getis and Aldstadt (2004).

Benjanuvatra and Burridge (2015) develop a quasi maximum-likelihood, QML, algorithm to estimate the

weights in W assuming partial knowledge about the form of the weights. More flexible approaches are

possible if we have panel information such as in Bhattacharjee and Jensen-Butler (2013) or Beenstock

and Felsenstein (2012). Endogeneity of the weight matrix is another topic introduced recently in the

field (i.e., Qu and f. Lee, 2015), which connects with the concept of coevolution put forward by Snijders

et al. (2007) whose basis is difficult to object: in the long run network connectivity must evolve with the

model, that is, with the endogenous variable. The recent literature on spatial econometrics is developing

according to the second approach, but our contribution pertains to the first one where still remains most

part of the applied research.

Before continue, we may wonder if the W issue, even in our context of pure exogeneity, is really a

problem to worry for or it is the biggest myth of the discipline as claimed by LeSage and Pace (2014).

Their argument is that only dramatic different choices for W would lead to significant differences in the

estimates or in the inference from the model. We partly agree with them in the sense that is a bit silly to

argue whether it is better the 5 or the 6 nearest-neighbor matrix; surely there will be almost no difference

between the two. However, there is consistent evidence, obtained mainly by Monte Carlo (Florax and

Rey, 1995; Franzese Jr and Hays, 2007; Lee and Yu, 2012; Debarsy and Ertur, 2016) showing that the

misspecification of W (mistakes a little bigger than marginal mismatches) tends to attenuate, or inflate,

the estimates of the coefficients of spatial dependence with an inverse impact on the slope coefficients.

Moreover, the magnitude of the bias increases for the estimates of the marginal direct/indirect effects.

So, we are not pretty sure that ’far too much effort has gone into fine-tunning spatial weight matrices’

as stated by LeSage and Pace (2014). Our impression is that any useful result is welcomed in this field

but, overall, we need practical, clear guides to solve the problem.

Another question of concern are the criticisms of Gibbons and Overman (2012). As said, it is common

in spatial econometrics to assume that the weighting matrix is known (although things are changing),

which is the cause of (weak) identification problems in the models; this flaw extends to the instruments,

moment conditions, etc. There is little to say in relation to this point. In fact, there is a kind of shift-share

move where the interdependence strength coefficients (i.e., the ρ parameter) and the pattern in which the

interaction happens (the matrix W) virtually merge, becoming not separable; they are jointly identified

(we do estimate ρW). Hays et al. (2010) and Bhattacharjee and Jensen-Butler (2013) agree in this point.

3



Bavaud (1998, p. 153), given this state of confusion, was very skeptic, ’there is no such thing as “true”,

“universal” spatial weights, optimal in all situations’ and continues by stating that the weighting matrix

’must reflect the properties of the particular phenomena, properties which are bound to differ from field

to field’. We share his skepticism about the concept of truth. Perhaps it would suffice with a ’reasonable’

weighting matrix, the best among those that we consider. In practical terms, this means that the problem

of selecting a weighting matrix can be interpreted as a problem of model selection. In fact, different

weighting matrices result in different spatial lags of the endogenous or the exogenous variables included

in the model. Finally, different equations with different regressors, or different structures, amounts to a

model selection problem.

We believe that this is the dominant approach in the current literature devoted to discussing the

W issue, that we want to explore and extend further in the present paper. Section 2 introduces four

selection criteria that fit well to the problem of selecting a weighting matrix from among a finite set of

them. Section 3 presents the main features of the Monte Carlo solved in the fourth Section. Section

5 includes two well known case studies which are revised in the light of our findings. Sixth Section

concludes.

2 Criteria to select a W matrix from among a finite set of them

As said, the W problem has been present in the literature since very early. However the case of choosing a

one of them from among a finite set of such matrices is relatively recent. Anselin (1984) is among the first

to pose formally. He suggested a Cox statistic derived in an analytical framework of non-nested models.

Leenders (2002), on this basis, elaborates a more simple J-test using the classical augmented regressions

in this literature. Later on, Kelejian (2008) extends the approach of Leenders to a SAC model, with

spatial lags of the endogenous variable and in the error term, using GMM estimates. Piras and Lozano

(2012) confirm the adequacy of the J-test to compare different weighting matrices stressing that we should

make use of a full set of instrument to increase GMM accuracy. Burridge and Fingleton (2010) show that

the Chi-square asymptotic approximations for the J-tests produces irregular results, excessively liberal

or conservative in a series of leading cases; they suggest a simple bootstrap resampling method. Burridge

(2012) focuses on the propensity of the spatial GMM algorithm to deliver spatial parameter estimates

lying outside the invertibility region of the model which, in turn, affects the bootstrap; he suggest the

use of a QML algorithm to remove the problem. Kelejian and Piras (2011) generalized and modify the

original version of Kelejian to account for all the available information, according to the findings of Piras

and Lozano. Finally, Kelejian and Piras (2016) adapt the J test to a panel data setting with unobserved

fixed effects and additional endogenous variables which reinforces the adequacy of the GMM framework.
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Another milestone in the J test literature is Hagemann (2012), who copes with the reversion problem

originated by the lack of a definite null hypothesis in the test. He introduces the minimum J test, MJ .

His approach is based on the idea that if there is a finite set of competing models, only the model with

the smallest J statistic can be the correct one. In this case, the J statistic will converge to the Chi-square

distribution but will diverge if any of the models is correct. The author proposes a wild bootstrap to

test if the model with the minimum J is correct. This approach has been applied by Debarsy and Ertur

(2016) to a spatial setting with good results.

Our intention is to use only the first part of the procedure of Hagemann, given that we know that

there is a correct model in the Monte Carlo that follows. So assuming that we have a collection of m

competing weighting matrices, such as: W = {W1; W2; ...; Wm} for the same model, then:

1. We are going to estimate the m models; each one corresponds to a different weighting matrix

belonging to W. Following Burridge (2012) and given that our interest lies on the small sample

case, the models are estimated by QML.

2. For each model, we obtain the battery of J statistic as usual, after estimating, also by QML, the

corresponding extended equations.

3. The chosen matrix is the one associated to the minimum J statistic. We do not test if this matrix

is really the correct matrix.

Another popular method for choosing between models deals with the so-called Information Criteria.

Most are developed around a loss function, such as the Kullback-Leibler, KL, quantity of information

which measures the closeness of two density functions. One of them corresponds to the true probability

distribution that generated the data, obviously not known, the other is the distribution estimated from

the data. The criteria differ in the role assigned to the aprioris and in way of solving the approximation

to the unknown true density function (Hansen, 2005). The two most common procedures are the AIC

(Akaike, 1973) and the Bayesian BIC criteria (Schwarz et al., 1978). The first compares the models on

equal basis whereas the second incorporates the notion of model of the null. Both criteria are characterized

by their lack of specificity in the sense that the selected model is the closest to the true model in terms

of KL without any other consideration (i.e., a good global fit does not mean that the model is the

best alternative to estimate the parameters of interest; Pötscher, 1991). AIC and BIC lead to single

expressions that depend on the accuracy of the ML estimation of the models (in this sense, they are

parametric methods) plus a penalty term related to the number of parameters entering the model, such

as the following:

AIC(k) : −2l(γ̃) + 2k,

BIC(k) : −2l(γ̃) + k log(n),

 (1)
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where l(γ̃) means the estimated log-likelihood at the ML estimates, γ̃, k is the number of non-zero

parameters in the model and n the number of observations. For the case that we are considering the

models only differ in the weighting matrix, so k and n are the same for every case. This means that

the decision depends on the estimated log-likelihood or, what is the same, on the balance between the

estimated variance and the Jacobian them given that, for a standard spatial model of SAR or SEM

type we can write: l(γ̃) ∝ log
[

1
σ̃n
|I − ρ̃W|

]
, being σ the standard deviation and ρ the corresponding

spatial dependence coefficient. To minimize any of the two statistics in (1) the objective is to maximize

the concentrated estimated log-likelihood, l(γ̃). The same as before, the Information Criteria approach

implies:

1. We have to estimate by QML each one of the m models corresponding to each weighting matrix

in W.

2. For each model, we obtain the corresponding AIC statistic (BIC produces the same results).

3. The matrix in the model with minimum AIC statistic should be chosen.

An important part of the recent literature on spatial econometrics has a Bayesian foundation, which

includes the topic of choosing a weighting matrix from among a finite set of alternatives. The point of

departure, once again, is to recognize that differences in the weighting matrix, everything else constant,

amounts to different models. The Bayesians are well equipped to cope with these type of problems; and

extended solution is to calculate posterior the model probabilities associated with each weight matrix as

the basis for taking a decision. There are excellent reviews that can be consulted such as Hepple (1995a,b,

2004), Besag and Higdon (1999) and especially, LeSage and Pace (2009). For the sake of completeness,

let us highlight the main elements in this approach.

The analysis is made conditional to a model, which is not under discussion. Thus, we have a collection

of m weighting matrices in W, a set of k parameter in γ, some of which are of dispersion, σ, others of

position, β, and others of spatial dependence, ρ and θ, and a panel data set with nT observations in y.

The point of departure is the joint probability of all these elements represented as:

p (Wi; γ; y) = π (Wi)π (γ |Wi)L (y | γ; Wi) , (2)

where π (·) are the prior distributions and L (y | γ; Wi) the likelihood for y conditional on the parameters

and the matrix. Bayes’ rule leads to the posterior joint probability for matrices and parameters:

p (Wi; γ | y) = π (Wi)π (γ |Wi)L (y | γ; Wi)
L (y) , (3)

whose integration over the space of parameters, γ ∈ Υ, produces the posterior probability for matrix Wi:
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p (Wi | y) =
∫
Υ

p (Wi; γ | y) dγ. (4)

The presence of spatial structures in the model complicates the resolution of (4) which usually

requires of numerical integration. The priors are always a point of concern in this approach and, usually,

practitioners prefer the use of diffuse priors. For example, LeSage and Pace (2009, Section 6.3) suggest

π (Wi) = 1
m ∀i, a NIG conjugate prior for β and σ where πβ (β | σ) ∼ N

(
β0;σ2 (κX ′X)−1

)
, being

X the matrix of the exogenous variables in the model, and π (σ) a inverse gamma, IG(a, b). For the

parameter of spatial dependence they suggest a Beta(d, d) distribution, being d the amplitude of the

sampling space of ρ. For example, the defaults in the MATLAB codes of LeSage (2007) are β0 = 0,

κ = 10−12 and a = b = 0. In sum, the use of the Bayesian approach implies the following:

1. Fix the priors for all the terms appearing in the equation. In this point, we have followed the

suggestions of LeSage and Pace.

2. For each matrix, obtain the corresponding posterior probability of (4) for which we need (i) solve

the ML estimation of the corresponding model and (ii) solve the numerical integration of (4).

3. The matrix chosen will be that associated with the highest posterior probability.

Our own proposal to deal with the selection problem is based on the notion of Entropy, who dates back

to Shannon and Weaver (1949). In our statistical framework, Entropy is viewed as a measure of the

information carried by a distribution of probability. Let us assume an univariate continuous variable, y,

whose probability density function is p(y); then, Entropy is defined as:

h(p) = −
∫
I

p(y) log p(y)dy, (5)

being I the domain of the random variable y. Higher Entropy means less information or, what is the

same, more uncertainty about y. Our case fits well with Shannon’s framework: we observe a random

variable, y, and there are a finite set of rival distribution functions potentially capable of having generated

such data. The features of our decision problem are also well defined because each distribution function

differs from the others only in the weighting matrix; the other elements are the same. We are not

interested in the Laplacian principle of indifference (select the density with maximum Entropy, or less

informative, to avoid the use of unwarranted information). Quite the opposite: given that in our case

there is no unwarranted information, we are looking for the more informative probability distribution so

our objective is to minimize Entropy.

As with the other three cases, the application of this principle requires the complete specification

of the distribution function, which means that the user knows the form of the model (equations 7 or
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8 below, except the W matrix); additionally we add a Gaussian distribution. Next, we should remind

that for the case of a (n× 1) multivariate normal random variable, y ∼ N(µ; Σ), the entropy is: h(y) =
1
2 (n+ log((2π)n |Σ|)). This measure does not depend, directly, on first order moments (parameters

of position of the model) but on second order moments (dependence and dispersion parameters). For

example, in the case of the SDM of (7) below, the entropy is:

h(y)SDM = 1
2
(
nT + log((2πσ2)nT ∣∣∣(B′B)−1

∣∣∣)), (6)

where B = (I − ρW). Note that the covariance matrix for y in the SDM is V (y) = B−1V (u)B′−1. If

u is indeed a white noise random term with variance σ2, the covariance matrix of y will match will that

which appears in (), V (y) = σ2 (B′B)−1. Let us also note that the covariance matrix of y in the SDEM

of (8) coincides with that of the SDM case, so the expression of the Entropy is formally the same as that

in (6).

Finally, in order to apply the Entropy criterion we must must go through the following steeps:

1. Estimate each one of the m versions of the model that we are considering. As said, each models

differs from the other only in the weighting matrix considered. We maintain the QML estimation

algorithm for reasons given above.

2. For each model, we obtain the corresponding value of the Entropy, in the hi; i = 1, 2, ...,m statistic.

3. The decision criterion consists in choosing the weighting matrix corresponding to the model with

minimum value of the Entropy.

3 Description of the Monte Carlo

This part of the paper is devoted to the design of the Monte Carlo conducted in the next Section in

order to to calibrate the performance of the four criteria for selecting W presented so far: the MJ test,

the Bayesian approach, the AIC criterion and the Entropy measure. The objective of the analysis is to

identify and select the true matrix, which intervened in the generation of the data. Moreover, our focus

is on small sample sizes. As will be clear in the next Section, the four criteria reach good standards very

quickly; so it is not necessary to simulate very large sample sizes

We are going to simulate a panel setting, with two of the most common DGPs in the current literature

on applied spatial econometrics; namely, the spatial Durbin Model, SDM in expression (7) below, and

the spatial Durbin error model, SDEM in expression (8):1

1Main conclusions can be extended to other processes like the spatial lag model or the spatial error model, which are
not replicated here (details on request from the authors).
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yit = ρ

n∑
j=i

ωijyjt + β0 + xitβ1 + θ

n∑
j=i

ωijxjt + εit, (7)

yit = β0 + xitβ1 + θ

n∑
j=i

ωijxjt + uit, uit = ρ

n∑
j=i

ωijujt + εit. (8)

Only one exogenous regressor, x variable, appears in the right hand side of the equations whose

observations are obtained from a normal distribution, xit ∼ i.i.d.N
(
0;σ2

x

)
, where σ2

x = 1; the same

applies with respect to the error terms: εit ∼ i.i.d.N
(
0;σ2

ε

)
, where σ2

ε = 1. The two variables are not

related, E (xitεit) = 0. Our space is made of hexagonal pieces which are arranged regularly, one next to

the others without discontinuities nor empty spaces.

The two equations are characterized by the presence of, at least, one weighting matrix which plays

a central role in the functioning of the model. As said before, the weighting matrix is not observable

and the user must take actions to resolve the uncertainty. The decision problem, in a typical situation,

consists in choosing one matrix from among a finite set of alternatives which in our simulation are

composed by only three candidates: W1 is built using the traditional contiguity criterion between spatial

units; the weights in W2 are the inverse of the distance between the centroids of the spatial units,

W2 =
{
ωij = 1

dij
; i 6= j

}
; whereas W3 incorporates a cut-point in the networks of connections of W2,

so that W3 =
{
ωij = 1

dij
; i 6= j if j ∈ N8(i); 0 otherwise

}
being N8(i) the set of 8 nearest neighbors to

i. Following usual practice, every matrix has been row-standardized. To keep things simple, the same

weighting matrix intervenes with the endogenous and exogenous variables in (7) and with the exogenous

and error terms in (8). Due to the row-standardization, the three matrices are non nested in the sense

that all the weights are different among them.

Only three different, small cross-sectional sample sizes, n, have been used n ∈ {25, 49, 100}; that is

enough because, as shown later, higher values of this parameter does not improve the information about

the W dilemma. For the same reason, the number of cross-sections in the panel, T , are limited to only

three, T ∈ {1, 5, 10}. The values for the coefficient of spatial dependence, ρ, ranges from negatives to

positives, ρ = {−0.8,−0.5,−0.2, 0.2, 0.5, 0.8}. Other global parameters are those associated with the

constant term, β0 = 1, the x variable, β1 ∈ {1, 5}, and its spatial lag, θ ∈ {1, 5}.

In sum, each case consists in:

• Generate the data using a given weighting matrix, Wk, k = 1, 2, 3 and a spatial equation, SDM

or SDEM . There are 216 cases of interest in the results of each equation (6 values in ρ, 3 values

in n, 3 values in T , 2 values in β1 and 2 values in θ).
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• The spatial equation is assumed to be known so the model can be estimated by maximum likelihood,

ML, once the user supplies a W matrix.

• Compute the four selection criteria, MJ , Posterior probability, Entropy and AIC for the three

alternative weighting matrices for each draw.

• Select the corresponding matrix according to each criterion and compare the result with the true

matrix in the DGP .

• The process has been replicated 1, 000 times.

Note that the selection of the matrix is made conditional on a correct specification of the equation. We

are perfectly aware that this dichotomy is artificial, both decisions are intimately related ( in fact, the

same matrix but in different equations plays different roles and bears different information). However,

this point is not further developed in the present paper. In order to give some intuition, we include the

results corresponding to the case of a wrong selection of the spatial equation (i.e, estimate a SDM model

whereas the true model in the DGP is a SDEM).

4 Results of the Monte Carlo

The Monte Carlo has provided us with a lot of information in relation to the four aforementioned criteria.

The aim of this Section is to summarize this volume of information. Let us advance an little spicy:

in strictly quantitative terms, the Entropy measure is the best criterion. What is more surprising, the

Bayesian approach is only marginally better than the simple AIC in a setting of small samples, practically

indistinguishable for large samples, but much more complicated to obtain; moreover, the MJ test is, by

large, the worse alternative among the four criteria. The last two observations are really striking for us

given the strong support that both criteria, the Bayesian and the MJ test, have received up to now in

the specialized literature.

Tables 1 to 3 summarize the main results of our Monte Carlo. These Tables show the percentage of

correct selections attained by each criterion, ordered according to the value of the spatial dependence

coefficient (rho in the Tables). The averages are obtained accumulating, for each n or T , the cases

corresponding to the different values of β’s or θ in the simulation. The detail of the results for the 216

cases corresponding to the three DGP/Estimated-equation combinations appear in Tables A1 to A3 in

the Appendix. A cell in bold indicates that the respective criterion reaches the maximum rate of correct

selections. A quick look at the Tables reveals that gray backgrounds are concentrated in the Entropy

criterion columns.

The predominance of the Entropy criterion for selecting the weighting matrix extends regularly for

all the cases, without exception: for correctly specified models, as in Tables 1 and 2, and misspecified
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equations, as in Table 3, for negative as well as positive values of the spatial autocorrelation coefficient, for

small and large cross-sections and for simple to large panels. Especially remarkable are the good results

attained by this criterion for the case of small sample sizes. The first panel in the three Tables shows that

the averages rates of correct selections are well above 80% for only 25 spatial units. The misspecification

in the estimated equation has only a marginal impact on the effectiveness of the three criteria. As can

be seen in Table 3, the percentages of right selections are similar to those obtained for correctly specified

models, well above 80% in most of the cases. Moreover, the ordering among the criteria continues to be

the same: Entropy, Bayes, AIC and MJ test.

Table 1: Average percentage of correct selections. DGP: SDM. Equation estimated: SDM.

Aggregated by cross-section, sample size (n) Aggregated by time series, sample size (T )
ρ h(y) Bayes MJ AIC ρ h(y) Bayes MJ AIC

n = 25

−0.8 84.4 77.8 52.4 79.6

T = 1

−0.8 77.1 70.5 42.4 73.4
−0.5 77.7 62.5 52.0 61.8 −0.5 70.6 58.3 41.4 61.8
−0.2 66.5 48.7 53.1 50.2 −0.2 63.2 42.3 43.8 45.7

0.2 68.2 59.8 65.0 61.2 0.2 59.2 39.8 53.1 44.8
0.5 77.5 72.6 73.2 72.1 0.5 65.6 54.9 60.4 58.7
0.8 85.4 81.7 74.5 75.5 0.8 78.8 73.7 69.2 69.6

n = 49

−0.8 91.3 88.7 57.6 90.1

T = 5

−0.8 95.0 93.0 62.3 93.5
−0.5 85.6 77.5 58.6 78.7 −0.5 88.4 80.2 63.7 79.5
−0.2 76.4 55.5 58.6 58.8 −0.2 77.6 57.3 62.4 60.1

0.2 77.2 67.9 73.1 70.0 0.2 81.3 76.6 78.1 76.1
0.5 86.3 81.7 81.6 82.0 0.5 93.2 92.5 87.1 89.8
0.8 94.6 93.8 88.1 87.4 0.8 98.5 98.3 88.2 89.9

n = 100

−0.8 94.7 94.3 63.9 95.2

T = 10

−0.8 98.2 97.4 69.2 97.9
−0.5 90.2 87.2 66.6 88.7 −0.5 94.5 88.7 72.1 87.9
−0.2 81.4 61.9 62.8 66.6 −0.2 83.5 66.5 68.2 69.8

0.2 84.5 76.4 79.4 77.1 0.2 89.5 87.7 86.4 87.4
0.5 92.4 90.5 85.6 89.7 0.5 97.5 97.5 92.9 95.4
0.8 97.2 96.3 89.5 92.4 0.8 99.8 99.8 94.6 95.8

As indicated in the Tables 1-3, these averages are obtained accumulating panels of different length,

from 1 to 10 cross-sections in the left of the Tables, or samples with different number of spatial units

(from 25 to 100) in the right hand. The case of a single cross-section with 25 spatial units appears at the

top of Tables A1 to A3, in the Appendix, yielding rates of correct selection around 60% for high values

of ρ; this percentage is well above 90% at the bottom of the Tables, where the number of cross-sections

in the panel is 10. In a similar vein, the increase in the cross-sectional size, n, maintaining the number

of cross-sections, T , also has highly beneficial effects for the four criteria. The rate of correct selections

for the case of a hundred of spatial units tends to be higher than 75% on average for the case of a single

cross-section, but this percentage fluctuates around 60% using 49 spatial unit and hardly reaches 50%

for the case of 25 spatial cells. These percentages improve quickly if the time dimension of the panel

increases. In general, the rate of correct selections is nearly 100%, using 5 to 10 cross-sections.
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Table 2: Average percentage of correct selections. DGP: SDEM. Equation estimated: SDEM.

Aggregated by cross-section, sample size (n) Aggregated by time series, sample size (T )
ρ h(y) Bayes MJ AIC ρ h(y) Bayes MJ AIC

n = 25

−0.8 86.4 77.3 56.7 82.5

T = 1

−0.8 80.2 68.8 46.3 75.9
−0.5 81.1 65.2 57.5 69.6 −0.5 74.5 58.6 47.7 67.1
−0.2 70.1 52.5 56.5 58.2 −0.2 67.1 45.7 47.7 53.7

0.2 63.8 52.4 56.9 57.7 0.2 59.2 39.0 49.6 47.1
0.5 69.6 62.6 55.7 63.7 0.5 59.5 48.4 50.1 51.9
0.8 77.2 73.8 54.0 67.0 0.8 64.7 61.8 52.9 56.6

n = 49

−0.8 92.5 88.5 64.5 91.0

T = 5

−0.8 96.2 94.7 71.1 95.4
−0.5 87.7 78.8 65.6 81.9 −0.5 91.5 84.8 72.5 84.9
−0.2 79.7 62.6 65.2 66.3 −0.2 81.7 67.1 71.6 69.6

0.2 72.9 61.4 65.2 65.9 0.2 76.2 69.3 70.3 73.1
0.5 80.6 75.7 64.5 75.1 0.5 87.1 85.5 67.8 83.7
0.8 87.3 87.1 64.0 79.6 0.8 95.9 95.4 64.6 86.8

n = 100

−0.8 96.3 95.8 75.1 96.4

T = 10

−0.8 98.7 98.2 78.9 98.6
−0.5 93.0 91.3 76.4 92.1 −0.5 95.8 91.6 79.3 91.7
−0.2 86.6 75.1 76.4 77.2 −0.2 87.6 77.4 78.8 78.3

0.2 83.0 74.9 75.1 78.3 0.2 84.2 80.3 77.3 81.7
0.5 90.5 89.1 72.9 88.1 0.5 94.1 93.5 75.2 91.3
0.8 95.4 95.6 69.4 90.7 0.8 99.3 99.4 70.0 93.9

Table 3: Average percentage of correct selections. DGP: SDEM. Equation estimated: SDM.

Aggregated by cross-section, sample size (n) Aggregated by time series, sample size (T )
ρ h(y) Bayes MJ AIC ρ h(y) Bayes MJ AIC

n = 25

−0.8 85.2 77.2 51.4 77.6

T = 1

−0.8 79.6 71.3 41.8 74.5
−0.5 79.5 64.1 55.1 62.3 −0.5 73.4 60.1 44.7 63.0
−0.2 68.8 52.4 57.4 52.7 −0.2 64.9 44.4 46.4 47.0

0.2 63.0 54.0 59.1 55.4 0.2 55.9 35.9 49.2 41.5
0.5 67.6 62.4 55.9 59.4 0.5 56.1 45.3 49.6 46.7
0.8 74.7 72.2 42.5 59.4 0.8 60.3 57.4 46.5 50.4

n = 49

−0.8 92.1 88.6 60.4 89.9

T = 5

−0.8 95.2 92.3 64.3 91.7
−0.5 87.8 78.9 62.7 79.8 −0.5 90.4 81.6 67.4 80.0
−0.2 79.5 61.3 64.7 63.1 −0.2 81.0 63.4 69.5 64.5

0.2 72.0 60.7 65.5 64.1 0.2 75.0 68.5 69.4 70.9
0.5 77.9 73.5 63.2 70.2 0.5 84.3 83.9 65.7 78.2
0.8 84.4 84.3 47.1 72.1 0.8 93.1 93.7 44.3 77.9

n = 100

−0.8 96.0 95.0 67.0 95.8

T = 10

−0.8 98.6 97.2 72.6 96.9
−0.5 92.3 88.6 70.4 89.8 −0.5 95.8 89.9 76.1 88.8
−0.2 85.2 68.9 71.5 71.3 −0.2 87.7 74.9 77.7 75.6

0.2 79.3 70.0 71.1 73.4 0.2 83.3 80.2 77.0 80.5
0.5 87.6 85.9 68.2 83.3 0.5 92.7 92.5 72.0 87.9
0.8 93.0 93.3 39.6 84.4 0.8 98.5 98.8 38.3 87.6

Figures 1 to 3 depict the case of a single cross-section for the three DGP/Estimated-equations

combinations and different values of the spatial autocorrelation coefficient and β and θ parameters. The

conclusions of these Figures can be extended to the other cases. Overall, as the number of cross-sections,

T , increases the curves turn into a straight line stuck to the 100% mark (see Figures A1 to A3 in the

Appendix for the same cases as in Figures 1 to 3 but with T = 10). It is clear that the probability of
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choosing the correct weighting matrix increases with the value of the autocorrelation coefficient and also

with the signal of spatial spillovers in the model coming from θ.

Figure 1: Percentages of correct seletions. DGP: SDM. Equation estimated: SDM.

CASE : n = 25;β1 = 1; θ = 1 CASE : n = 25;β1 = 1; θ = 5

CASE : n = 49;β1 = 1; θ = 1 CASE : n = 49;β1 = 1; θ = 5

CASE : n = 100;β1 = 1; θ = 1 CASE : n = 100;β1 = 1; θ = 5

The value of parameter β1, as expected, has no impact in any criteria. Another interesting feature is

the asymmetry of the selection curves. Negative spatial dependence, scarcely considered in the literature,

is beneficial for the detection of the correct weighting matrix, especially when the signals from spatial

spillover are weak (low value in the parameter θ) and the number of panel cross-sections is also low. The

asymmetry appears in all criteria, except in the MJ test whose behavior, contrary to the others, worsens
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in case of negative values in parameter ρ. The impact of the asymmetry disappears with higher values

in T as well as in parameter θ.

Figure 2: Percentages of correct seletions. DGP: SDEM. Equation estimated: SDEM.

CASE : n = 25;β1 = 1; θ = 1 CASE : n = 25;β1 = 1; θ = 5

CASE : n = 49;β1 = 1; θ = 1 CASE : n = 49;β1 = 1; θ = 5

CASE : n = 100;β1 = 1; θ = 1 CASE : n = 100;β1 = 1; θ = 5
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Figure 3: Percentages of correct seletions. DGP: SDM. Equation estimated: SDM.

CASE : n = 25;β1 = 1; θ = 1 CASE : n = 25;β1 = 1; θ = 5

CASE : n = 49;β1 = 1; θ = 1 CASE : n = 49;β1 = 1; θ = 5

CASE : n = 100;β1 = 1; θ = 1 CASE : n = 100;β1 = 1; θ = 5

To complete the picture, we are going to estimate, for each DGP/Estimated-equation combination,

a response-surface to model the empirical probability of choosing the correct weighting matrix using the

corresponding criterion, pi. As usual, a logit transformation of the empirical probabilities is carried out,

so the estimated equation is:

log
(

pi + (2r)−1

1− pi + (2r)−1

)
= p∗i = η + ziϕ+ εi, (9)
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where p∗i is the logit transformation, often known as the logit, r the number of replications of each

experiment (1000 in all the cases; (2r)−1 appears in 9 to assure the the logit is defined even when

the probability of correct selection is 0 or 1; Maddala, 1983); η is an intercept term, zi the design

matrix whose columns reflect the conditions of each experiment, ϕ is a vector of parameters and εi the

error term assumed to be independent and identically distributed (this assumption is reasonable if all

experiments come from the same study, as ours, and are obtained under identical circumstances; Florax

and De Graaff, 2004) Let us remind that the number of observations for each response-surface equation is

216 (so i = 1, 2, ..., 216). Table 4 shows the results for the three DGP/Estimated-equation combination

combination.

Table 4: Estimated response surfaces.

SDEM case constant n T β1 θ |ρ| R2 FAV

Entropy
-5.4864 0.0029 0.0378 0.0035 0.0482 0.2898

0.64
74.34

(-131.7) (8.66) (13.06) (0.66) (9.03) (6.65) pval = 0

Bayes
-6.2233 0.0051 0.0660 -0.0017 0.0904 0.6813

0.66
81.57

(-84.48) (8.52) (12.87) (-0.18) (9.58) (8.83) pval = 0

MJ test
-6.1300 0.0044 0.0520 0.0106 0.1569 -0.0378

0.82
196.74

(-125.4) (10.95) (15.27) (1.70) (25.05) (-0.74) pval = 0

AIC
-5.9177 0.0042 0.0506 0.0044 0.0795 0.4590

0.67
87.21

(-105.4) (9.25) (12.93) (0.61) (11.04) (7.81) pval = 0

SDM case constant n T β1 θ |ρ| R2 FAV

Entropy
-5.4386 0.0023 0.0351 0.0070 0.0423 0.3478

0.68
133.46

(-154.9) (8.01) (14.35) (1.58) (9.40) (9.46) pval = 0

Bayes
-6.1117 0.0033 0.0548 0.0052 0.0861 0.8117

0.60
63.33

(-80.28) (5.31) (10.33) (0.52) (8.82) (10.18) pval = 0

MJ test
-5.8998 0.0024 0.0476 0.0185 0.1036 0.1668

0.47
36.74

(-74.41) (3.60) (8.27) (1.75) (9.77) (1.93) pval = 0

AIC
-5.9340 0.0034 0.0478 0.0091 0.0721 0.6301

0.67
83.61

(-105.2) (7-37) (12.19) (1.21) (9.98) (10.67) pval = 0

MIX case constant n T β1 θ |ρ| R2 FAV

Entropy
-5.5026 0.0028 0.0411 0.0002 0.0466 0.2905

0.66
80.25

(-133.9) (8.43) (14.36) (0.04) (8.86) (6.75) pval = 0

Bayes
-6.1882 0.0040 0.0648 -0.0001 0.0916 0.7103

0.67
85.13

(-88.69) (6.95) (13.34) (-0.01) (10.24) (9.73) pval = 0

MJ test
-5.6677 0.0020 0.0379 0.0007 0.1162 -0.3854

0.54
50.92

(-79.01) (3.35) (7.58) (0.07) (12.63) (-5.13) pval = 0

AIC
-5.9741 0.0043 0.0558 0.0000 0.0696 0.4728

0.68
88.38

(-105.4) (9.23) (14.13) (0.00) (9.58) (7.97) pval = 0
Note: t-ratios appear between brackets. FAV means F test of the null that all coefficients are zero except the constant.

Overall, the estimates confirm our suppositions. The main factor influencing the empirical probability

of choosing the correct weighting matrix is the parameter of spatial dependence, absolute value of ρ in

Table 4. Its contribution is crucial in the case of the Bayesian criteria and, to a lesser extend, also

in the case of the AIC approach. On the contrary, the MJ test is very peculiar: this parameter is

not significant for SDEM processes, hardly significant for SDM models and becomes a handicap for
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misspecified equations.The second more influential factor is the signal of the spatial spillovers, parameter

θ. Clearly, its impact is beneficial for all the cases though it is of greater importance for the MJ test;

Bayes and AIC are a bit less sensitive whereas its effect on Entropy is the lowest. Sample size is also

relevant for the four approaches and T seems to be more important than n, both in term of p-values

and estimated impact. Finally, as said before, parameter β1 is not significant in any circumstance which

means that the signal-to-noise ratio is not a crucial factor to consider when choosing the best weighting

matrix for our spatial equation.

Table 5 completes the response-surface analysis with the F tests of equality in the coefficients of the

response-surface estimates. According to the sequence of F tests, the most dissimilar method is the MJ

approach, and second is the Entropy criterion. In the opposite sense, Bayes and AIC are the most similar

approaches, even indistinguishable in the case of SDM equations.

Table 5: F test for the equality of coefficients in the response-surface estimates

SDEM case Entropy Bayes MJ test AIC

Entropy – 25.863 (0.00) 218.37 (0.00) 16.771 (0.00)
Bayes – – 34.782 (0.00) 4.5580 (0.00)
MJ test – – – 61.772 (0.00)
AIC – – – –

SDM case Entropy Bayes MJ test AIC

Entropy – 21.831 (0.00) 178.56 (0.00) 56.876 (0.00)
Bayes – – 17.417 (0.00) 1.811 (0.10)
MJ test – – – 28.556 (0.00)
AIC – – – –

MIX case Entropy Bayes MJ test AIC

Entropy – 74.819 (0.00) 266.55 (0.00) 46.445 (0.00)
Bayes – – 69.142 (0.00) 5.1722 (0.00)
MJ test – – – 85.234 (0.00)
AIC – – – –
Note: p-value appear between brackets.

To finish this Section let us to move to Table 6 which summarizes the overall standings of the four

criteria in our simulation. This Table shows the percentages that each criterion has reached the maximum

rate of correct selections in each pair DGP/Estimated-equation. We believe that the conclusion is rather

clear: for small sampling sizes, the Entropy criterion is the best alternative to choose the weighting

matrix. If the equation is correctly specified (the first two panels), the Entropy criterion appears in

leading place approximately 90% of times, next is Bayes and then AIC; MJ is always in the last

position. The percentage for the Entropy criterion is smaller in the case of misspecified model on the

third panel (70.4% on average) but it is still the best alternative to choose the weighting matrix. Overall,

mixing all the cases in the fourth panel, three out of four times, Entropy is the best alternative whose

probability of making the correct selection going quickly to 1 with sample size. Bayes and AIC appear to

be also consistent criteria, given that their probability of choosing the correct W matrix according tends
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to one when the sample size increases (at a lower speed than the case of Entropy). The MJ criterion has

many problems, including its apparent inconsistency. We can not recommend its use for the case we are

studying.

Table 6: Number of times that each criterion represents the maximum value of correct decision for each study
case, in percentage.

Aggregated by cross-section, sample size (n) Aggregated by time series, sample size (T )

DGP: SDM Equation estimated: SDM
n h(y) Bayes MJ AIC T h(y) Bayes MJ AIC

25 90.3 11.1 6.9 0.0 1 87.5 1.4 5.6 5.6
49 79.2 23.6 6.9 16.7 5 75.0 27.8 11.1 19.4
100 66.7 38.9 20.8 38.9 10 73.6 44.4 18.1 30.6
Total 78.7 24.5 11.6 18.5 Total 78.7 24.5 11.6 18.5

DGP: SDEM Equation estimated: SDEM
n h(y) Bayes MJ AIC T h(y) Bayes MJ AIC

25 93.1 4.2 1.4 1.4 1 90.3 6.9 1.4 1.4
49 79.2 29.2 4.2 13.9 5 76.4 27.8 5.6 16.7
100 72.2 50.0 18.1 34.7 10 77.8 48.6 16.7 31.9
Total 81.5 27.8 7.9 16.7 Total 81.5 27.8 7.9 16.7

DGP: SDEM Equation estimated: SDM
n h(y) Bayes MJ AIC T h(y) Bayes MJ AIC

25 73.6 13.9 12.5 0.0 1 83.3 5.6 11.1 0.0
49 72.2 27.8 5.6 9.7 5 61.1 30.6 4.2 15.3
100 65.3 44.4 11.1 25.0 10 66.7 50.0 13.9 19.4
Total 70.4 28.7 9.7 11.6 Total 70.4 28.7 9.7 11.6

All DGPs All estimated equations
n h(y) Bayes MJ AIC T h(y) Bayes MJ AIC

25 85.7 9.7 6.9 0.5 1 87.0 4.6 6.0 2.3
49 76.9 26.9 5.6 13.4 5 70.8 28.7 7.0 17.1
100 68.1 44.4 16.7 32.9 10 72.7 47.7 16.2 27.3
Total 76.9 27.0 9.7 15.6 Total 76.9 27.0 9.7 15.6

5 Empirical applications

The empirical applications in this section are based on two well-known economic models. The first one is

a model of growth estimated by Ertur and Koch (2007) using a cross-section sample of 91 countries over

the period 1960–1995. The other example is an economic model of productivity estimated by Munnell

(1990) using panel data on 48 states in US over the period 1970–1979. Our aim in this section is to test

the hypothesis about the appropriate selection of spatial weight matrices in each case.

5.1 Study case 1: Ertur and Koch (2007)

Ertur and Koch (2007) build a growth equation to model technological interdependence between countries

using spatial externalities. The main hypotheses of interaction is that the stock of knowledge in one

country produces externalities that may cross national borders and spill over into neighboring countries,
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with an intensity which decreases with distance. The authors use the criterion of pure geographical

distance.

The benchmark model assumes an aggregate Cobb-Douglas production function, for the country i in

time period t, with constant returns to scale in labour and physical capital:

Yi(t) = Ai(t)Kα
i (t)L1−α

i (t), (10)

where Yi(t) is output, Ki(t) is the level of reproducible physical capital, Li(t) is the level of labour, and

Ai(t) is the aggregate level of technology specified as:

Ai(t) = Ω(t)kφi (t)
n∏
j 6=i

A
δωij

i (t). (11)

The aggregate level of technology Ai(t) of any country i depends on three elements. First, a certain

proportion of technological progress is exogenous and identical in all countries: Ω(t) = Ω(0)eµt, where is a

constant rate of technological growth. Second, each country’s aggregate level of technology increases with

the aggregate level of physical capital per worker kφi (t) = (Ki(t)/Li(t))φ with the parameter φ ∈ [0; 1]

capturing the strength of home externalities by physical capital accumulation. Finally, the third term

captures the external effects of knowledge embodied in capital located in a different country whose impact

crosses national borders at a diminishing intensity, δ ∈ [0; 1]. The terms ωij represent the connectivity

between country i and its neighbours; this weight is assumed to be exogenous, non-negative and finite.

Following Solow, the authors assume that, in every country i, a constant fraction of output si is saved

and that labour grows exogenously at the rate ni. Also, they assume a constant and identical annual

rate of depreciation of physical capital for all countries, denoted τ . The evolution of output per worker

in country i is governed by the usual fundamental dynamics of the Solow equation which, after some

manipulations, lead to the steady-state real income per worker in that country (Ertur and Koch, 2007,

p. 1038, eq. 9):

y = Ω + (α+ φ) k − αδWk + δWy. (12)

This is a spatially augmented Solow model and coincides with the predictor obtained by Solow adding

spillover effects. In terms of spatial econometrics, it is immediate to recognize a Spatial Durbin Model,

SDM , in the equation which can be expressed as:

y = xβ + ρWy + Wxθ + ε. (13)
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Equation (13) is estimated using information on real income, investment and population growth for

a sample of 91 countries over the period 1960− 1995. Regarding the spatial weighting matrix, Ertur and

Koch consider two geographical distance functions: the inverse of squared distance (which is the main

hypothesis) and the negative exponential of squared distance (to check robustness in the specification).

We also consider a third matrix using the inverse of the distance.

Let us call the three weighting matrices as W1, W2 and W3 which are row-standardized: ωhij =

ω∗hij/
n∑
j=1

ω∗hij ; h = 1, 2, 3 where:

ω∗1ij =

 0 if i = j

d−2
ij otherwise

; ω∗2ij =

 0 if i = j

e−dij otherwise
; ω∗3ij =

 0 if i = j

d−1
ij otherwise

, (14)

with dij as the great-distance between the capitals of countries i and j.

The authors analyze several specifications checking for different theoretical restrictions and

alternatives spatial equations. We concentrate our revision in the non-restricted equation of Ertur and

Koch (in the sense that it includes more coefficients than advised by theory). Table 7 presents the SDM

version of this equation using the three alternative weighting matrices specified before (the first two

columns coincides with those in Table I, columns 3-4, pp. 1047, of Ertur and Koch, 2007). The the last

four rows in the Table shows the value of the selection criteria corresponding to each case.

Table 7: Ertur & Koch case. Unrestricted SDM estimates
Model/Weight matrix SDM / W1 SDM / W2 SDM / W3
constant 1.178−(0.62) 0.678−(0.36) 5.045−(0.96)
log(s) 0.829−(8.24) 0.795−(7.60) 0.908−(8.50)
log(n+ 0.05) −1.500 (−2.62) −1.452 (−2.61) −1.711 (−2.68)
W× log(s) −0.283 (−1.51) −0.345 (−2.06) 0.468−(1.19)
W× log(n+ 0.05) 0.528−(0.62) 0.118−(0.15) 2.177−(1.02)
W× log(y) 0.716−(9.61) 0.643−(8.43) 0.899 (13.67)
Selection Criteria
Entropy 28.021∗∗∗ 29.631∗∗∗ 34.616∗∗∗

Bayesian 0.871∗∗∗ 0.127∗∗∗ 0.002∗∗∗

MJ test 11.158∗∗∗ 9.388∗∗∗ 10.208∗∗∗

AIC 95.885∗∗∗ 99.100∗∗∗ 109.132∗∗∗

Note: t-ratios appear between brackets.

The preferred model by Ertur and Koch corresponds to the pair SDM/W1 which coincides with

the selection corresponding to the criterion of minimum Entropy, the Bayesian posterior probability and

AIC. The selection of the minimum J test is W2.

Other results in Ertur and Koch concern to the Spatial Error Model version of the steady-state

equation of (12), or SEM model. The intention of the authors is to visualize the presence of spatial

correlation in the traditional non spatial Solow equations; our intention is just to add another example
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of selection of weighting matrices in misspecified models. The main results appear in Table 8 (which can

be compared with columns 2-3 of Table II, in Ertur and Koch, 2007, p. 1048).

Table 8: Ertur & Koch case. Unrestricted SEM estimates
Model/Weight matrix SEM / W1 SEM / W2 SEM / W3
constant 6.457−(4.22) 6.706−(4.62) 5.892−(3.02)
log(si) 0.828−(8.36) 0.804−(7.87) 0.992−(8.94)
log(ni + 0.05) −1.702 (−3.03) −1.552 (−2.85) −2.269 (−3.65)
W× εi 0.823 (15.69) 0.737 (12.19) 0.937 (22.08)
Selection Criteria
Entropy 30.973 31.734 42.049
Bayesian 0.655 0.345 0.000
MJ test 0.171e−12 0.043e−12 0.085e−12

AIC 97.870 99.391 120.021
Note: t-ratios appear between brackets.

In spite of the misspecified model, the selection of most adequate W matrix does not change. Using

the values of Entropy criterion we select the first model, in which intervenes the matrix W1, the same as

with the Bayesian approach and the AIC criterion; MJ continues selecting W2.

5.2 Study case 2: Munnell (1990)

Munnell et al. (1990) suggests a Cobb-Douglas production function in each state of the US (excluding

“islands” Alaska and Hawaii and the district of Columbia, for a total of 48 states) observed over the

years between 1970 and 1986. The dependent variable, output of the production function, is the gross

state product, log(gsp), and the explanatory variables considered are the endowment of public capital,

log(pcap) (roads, water facilities and other utilities), the private capital, log(pc), employment, log(emp),

and the unemployment rate, unemp, in order to proxy for the effects of the business cycle. The model

can be expressed formally as follows:

log(gspit) = α+ β1 log(pcapit) + β2 log(pcit) + β3 log(empit) + β4unempit + µi + εit,

with i = 1, . . . , 48, and t = 1, . . . , 10. This dataset had been used by Millo et al. (2012) and Álvarez

et al. (2017) among others. For this example, we consider subset of the original data including only the

observations between 1970 and 1979. This selection is to keep the number of regions and time periods

into the panel dimensions used in the Monte Carlo simulation.

We estimate a fixed effect model with the most complex spatial models used in Monte Carlo, SDEM

and SDM . Following previous studies, our main hypothesis of spatial spill-over is based on contiguity

criterion (W1 in our case). This matrix presents an average of connectivity of 4.5 neighbours and the

median of neighbours is 4. Using this information, we propose two very near alternative spatial weighting
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matrices using k-nearest neighbours criterion: W2 is constructed using 4 nearest neighbors and W3 with

5 nearest neighbors.

Let us call the three weighting matrices as W1, W2 and W3 which are row-standardized: ωhij =

ω∗hij/
n∑
j=1

ω∗hij ; h = 1, 2, 3 where:

ω∗1ij =

 1 if (i, j) have common frontier

0 otherwise
;

ω∗2ij =

 1 if dij ≤ di(k=4)

0 otherwise
;

ω∗3ij =

 1 if dij ≤ di(k=5)

0 otherwise
,

(15)

with dij as the Euclidean-distance between the centroids of counties i and j, and di(k) indicates the

distance of k − th neighbor.

Previously to applied the set of criteria, we check the significance of spatial effects using LM tests

obtaining as final specification a SDEM model with two spatial lagged explanatory variables, W×log(pc)

and W × log(emp). This is the preferred model and, also, we present the results of SDM model as a

misspecified model. All results are presented in the Tables 9 and 10.

Table 9: Munnell case. SDEM estimates
Model/Weight matrix SDEM / W1 SDEM / W2 SDEM / W3
log(pcap) 0.103−(3.07) 0.111−(3.32) 0.106−(3.15)
log(pc) 0.289−(8.50) 0.289−(8.31) 0.288−(8.30)
log(emp) 0.629 (18.02) 0.637 (17.76) 0.606 (17.37)
unemp −0.003 (−2.40) −0.003 (−2.34) −0.002 (−1.79)
W× log(pc) −0.201 (−3.81) −0.232 (−4.71) −0.250 (−4.43)
W× log(emp) 0.191 (4.13) 0.224 (4.66) 0.283 (5.14)
W× ε 0.420 (8.28) 0.357 (6.56) 0.432 (7.81)
Selection Criteria
Entropy −1.131∗∗∗ −1.117∗∗∗ −1.128∗∗∗

Bayesian 0.763∗∗∗ 0.000∗∗∗ 0.237∗∗∗

MJ test 15.890∗∗∗ 5.958∗∗∗ 0.292∗∗∗

AIC −2.134∗∗∗ −2.115∗∗∗ −2.132∗∗∗

Note: t-ratios appear between brackets.

The criterion of minimum Entropy, the Bayesian posterior probability and AIC are coincident to select

as preferred model the pair SDEM/W1. The selection of the minimum J test is SDEM/W3.

For the misspecified model, the Spatial Durbin Model, the selection for each criterion of the weighting

matrix is similar to the previous one model. In Table 10, Entropy, the Bayesian posterior probability and

AIC select the pair SDM/W1 and minimum J test chooses SDM/W3.
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Table 10: Munnell case. SDM estimates
Model/Weight matrix SDM / W1 SDM / W2 SDM / W3
log(pcap) 0.108−(3.34) 0.126−(3.92) 0.114−(3.58)
log(pc) 0.311−(8.60) 0.306−(8.42) 0.306−(8.45)
log(emp) 0.589 (16.04) 0.614 (16.45) 0.578 (15.85)
unemp −0.003 (−2.72) −0.003 (−2.71) −0.002 (−2.21)
W× log(pc) −0.293 (−5.94) −0.299 (−6.35) −0.318 (−6.37)
W× log(emp) −0.118 (−2.05) −0.067 (−1.09) −0.070 (−1.07)
W× log(y) 0.430 (8.77) 0.359 (6.80) 0.430 (7.98)
Selection Criteria
Entropy −1.137∗∗∗ −1.121∗∗∗ −1.131∗∗∗

Bayesian 0.961∗∗∗ 0.000∗∗∗ 0.039∗∗∗

MJ test 8.693∗∗∗ 6.246∗∗∗ 1.122∗∗∗

AIC −2.144∗∗∗ −2.121∗∗∗ −2.139∗∗∗

Note: t-ratios appear between brackets.

6 Conclusions

Much of the applied literature on spatial econometrics and regional data sets an exogenous approximation

to the W matrix. It is assumed that the user has some previous knowledge with respect to the network

of interaction among the sampling units, which allows him to build a weighting matrix on purely apriori

grounds. In recent years, new literature has been published advocating for a more data driven approach

to the W issue. We strongly support this tendency, which should be dominant in the future, but now

our focus is on the exogenous approach.

The problem that we pose is relatively frequent in applied work: the user has a finite collection of

weighting matrices, all of them consistent with the case of study, and she/he needs to select one of

them. Which is the best W?. This question is far from being new in the literature where we can find

different proposal: the Bayesian posterior probability, the J tests in all its variants or the simple model

selection criteria such as AIC or BIC, very common in mainstream econometrics (probably there are

other alternatives). We add a fourth criterion such as the Entropy of the estimated distribution function.

Entropy is a measure of uncertainty, popular in applied statistic, which fits pretty well in our problem.

It depends on the estimated covariance matrix offering a more complete picture of the goodness of the

distribution function (let us remind that every distribution function is linked to a particular W).

The conclusions of our Monte Carlo are very enlightening. First, the different criteria do a good

work in the sense that they select, almost with security, the correct matrix for the case of large samples.

Let us add, however, that the J test, even using the refined approach of Hagemann (2012), is the worst

alternative.The length of the time series appear to be more beneficial than the number of cross-sectional

units in the sample. In second place, it is important to highlight that the four criteria are not indifferent,

especially in samples of small size (in n or in T ). The ordering is clear: Entropy in first place, Bayesian

posterior probability in continuation with AIC slightly worse and then J in the fourth position.
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Our recommendation for applied researchers is check for the adequacy of the weighting matrix and,

in case of various candidates, take a decision using well-defined criteria such as the Entropy. The case

studies presented in Section 5 illustrates this procedure.
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Figure A1. Percentages of correct selection. 

DGP: SDM          Equation estimated: SDM. T=10 

1CASE: n=25; =1; θ=1β  1CASE: n=25; =1; θ=5β  

  

1CASE: n=49; =1; θ=1β  1CASE: n=49; =1; θ=5β  

  

1CASE: n=100; =1; θ=1β  1CASE: n=100; =1; θ=5β  

  
 



 

Figure A2. Percentages of correct selection.  

DGP: SDEM          Equation estimated: SDEM. T=10 

1CASE: n=25; =1; θ=1β  1CASE: n=25; =1; θ=5β  

  

1CASE: n=49; =1; θ=1β  1CASE: n=49; =1; θ=5β  

  

1CASE: n=100; =1; θ=1β  1CASE: n=100; =1; θ=5β  

  
 



 

Figure A3. Percentages of correct selection.  

DGP: SDEM          Equation estimated: SDM. T=10 

1CASE: n=25; =1; θ=1β  1CASE: n=25; =1; θ=5β  

  

1CASE: n=49; =1; θ=1β  1CASE: n=49; =1; θ=5β  

  

1CASE: n=100; =1; θ=1β  1CASE: n=100; =1; θ=5β  
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