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Abstract

In this paper, we propose a novel spatial econometric model, denoted as Spatial

Aggregation-Repulsion-Diffusion (SARD). The model is derived as the approxima-

tion of a class of micro-founded growth models in a diversified space, which en-

compasses both local accumulation and agglomerative, repulsive and diffusive forces

driving spatial factor reallocation. The estimate of the SARD model for the income

of Italian municipalities over the period 2014-2019 supports the main predictions de-

rived by the theory and outperforms the most common spatial econometric models

used in the literature.
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1 Introduction

The investigation of the causes of the spatial distribution of regional economic activ-

ity is a very debated issue in the literature (Quah, 2002). Several economic geography

models have been introduced to explain the emergence of spatial patterns characterized

by geographical aggregations of economic activities and well-defined locations of these

aggregations relative to one another, i.e. the size distribution of cities and their spatial

distribution (Krugman, 1991). Despite an increasing literature, a definitive explanation of

how aggregation economies emerge from the behaviour of individual agents is still needed

(Rossi-Hansberg, 2019). In particular, the exploration of the micro-foundations of regional

economics seems to be the new challenge for a better understanding of the real world, in

the light of the increasing availability of accurate data at fine geographical scale (Allen

and Arkolakis, 2014; Desmet et al., 2018). Furthermore, the complex nature of the distri-

bution of economic activity across space and of its evolution through time, requires the

development of specific quantitative techniques. On the one hand, the standard spatial

econometric models have been used in the literature to capture the correlation structure

in the equilibrium outcome resulting from social/spatial interaction (e.g., Anselin, 2002;

Brueckner, 2003; Ertur and Koch, 2007; Xu and Lee, 2019; Combes and Gobillon, 2015).

On the other hand, geostatistical models have focused the on spatial process underlying

observations rather than on the interaction among observations (Cressie and Wikle, 2015).

In this paper, we propose a new class of theory-driven spatial econometric models,

denoted SARD model, based on a spatial growth model where the collective macroscopic

behaviour emerges from the dynamic of interacting and locally optimizing agents, and

the macroeconomic dynamic is expressed by a Partial Differential Equation (PDE). The

spatial growth model is defined in continuous space and time and belongs to the class

of Aggregation-Diffusion Equations (ADEs), which over the past 20 years have been em-

ployed in several biological applications and stimulated many mathematical works (see

Carrillo et al., 2019a for a review). In particular, the competing effect of aggregation,

repulsion and diffusion leads to several interesting properties, such as metastability, sym-

metrization over time, and non-uniqueness in equilibrium solutions. A precise character-

ization of equilibria is not readily available: in the general case (Carrillo et al., 2019b)
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proved only that equilibria are radially symmetric in absence of exogenous elements. In

the special case where the interaction kernel is of logarithmic type, the authors also proved

the uniqueness of the equilibrium as well as the convergence to the unique equilibrium

independently on the initial configuration. Moreover, another remarkable feature of ADEs

is that they can be obtained as the mean-field limit of a system of discrete interacting

agents, as the number of agents becomes large.

To bring the model to the data we have to employ a discretization technique, which

allows deriving a discrete space-time counterpart of our continuous space-time model. In

particular, the non-uniform spatial structure of the observed economic activities and de-

mographic variables, that is the fact that they are not arranged on a regular cartesian grid

but into irregular cells, such as administrative regions, imposes the use of a discretization

technique, i.e. generalised finite difference methods, to transpose the system of PDEs,

which are defined in the continuum, into a set of discrete locations (Jensen, 1972). Given

that the theoretical model is developed in continuous space, the derivation of the empir-

ical model imposes some limitations from the point of view of the data to be used since

there is an intermediate discretization step from continuous to discrete locations. These

limitations are discussed in Section 3.2. This constitutes one of the main differences to

the already mentioned literature of spatial econometrics, where locations are assumed to

be discrete by the start.

Even though in the end we arrive at a discrete space-time model, the formalism of

PDEs in continuous space provides an innovative tool to introduce new elements in the

theory of spatial econometrics. In particular, as described in more detail in Section 2, it

allows constructing regressors having the remarkable feature of being cross-sectional zero-

sum by construction, that is they do not contribute to the overall growth of the variable of

interest when summing up across all available locations. This yields an initial disentangle

between individual growth and pure reallocation. Moreover, by exploiting the presence of

differentials in the level of the variables considered across neighbouring locations, instead

of simply measuring the effect of spatial correlation through local averages, our regres-

sors are also able to distinguish between the aggregating1 effect towards more appealing
1With the word aggregation in this paper we will always refer to the concept of spatial aggregation,

that is the tendency of economic agents to spatially relocate to be closer to each other.
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locations (centripetal force) arising for example from the higher wages in central labour

markets, and the diffusive effect (centrifugal force) caused for example by the higher cost

of living in a congestioned location.

We emphasize that in this paper we are not proposing a methodology to find the best

fit for our PDE model but, instead, we aim to introduce a new spatial econometric model

following a theory-driven approach from individual agents to macroscopic behaviour. In

particular, we derive new expressions for linear regressors which are obtained from the

discretization of a spatial theoretical model expressed with the language of PDE. More-

over, the specific form of our model (linear in the parameters to be estimated), also allows

us to study directly the process in the transient regimes, i.e. not assuming to be in a

neighbour of the equilibrium, therefore without relying on a (log-)linearization around

the steady state (Ertur and Koch, 2007). Since the final econometric model can be es-

timated via OLS, our methodology doesn’t suffer from the typical computational issues

of spatial econometrics, such as matrix inversion or constrained optimization (Anselin

and Rey, 2012). In our case, the computational complexity of the construction of spatial

differential matrices, described in detail in Appendix B, still is influenced by the size of

the problem. However, it scales only linearly in the number of observations, therefore not

constituting a problem even for large datasets.

The paper is organized as follows: Section 2 presents the spatial growth model ex-

pressed by a PDE; Section 3 the methodology to derive a linear econometric model by

a PDE; Section 4 discuss the empirical application to Italian municipalities; and, finally,

Section 5 concludes. Technical details are gathered in Appendix.

2 A prototype model of spatial growth

This section introduces a class of spatial growth models encompassing the main features

present in the literature, i.e. the spatial non uniformity caused by geographical and socio-

economic factors, the spatial aggregation of economic activity driven by positive spatial

spillovers, the centrifugal dynamics driven by congestion, and, finally, the existence of

randomness in the individuals’ movement (Fujita and Thisse, 2002).

Let y(t, z) be the variable of interest of our model in location z at time t, e.g. municipal
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total income per square kilometre, where Ω ⊆ R2. Each point z ∈ Ω is identified by two

components z = (z1, z2), i.e. latitude and longitude. The dynamics of y(t, z) is assumed

to obey the following partial differential equation (PDE):

∂ty(t, z) = ϕ (y(t, z)) +

+ γSdivz (y(t, z)∇zS(z)) +

+ γAdivz (y(t, z)∇z (KhA ∗ y) (t, z)) +

+ γRdivz (y(t, z)∇z (KhR ∗ y) (t, z)) +

+ γD∆zy(t, z). (1)

Appendix A briefly discusses how Eq. (1) can be derived in the limit of an infinity-agent

economy as the outcome of the agents’ mobility driven by locally maximizing behaviour

(see Fiaschi and Ricci, 2023, for a more detailed analysis). Eq. (1) makes a wide use of

concepts used in PDE literature, which will be discussed in details below in relation to

the different features we are interested to model.

Firstly, the variable on the left-hand side ∂ty(t, x) represents the total variation of the

quantity y(t, z) at time t in location z, expressed through the use of the partial derivative

∂t with respect to time. The first term on the right-hand side of Eq. (1) ϕ (y(t, z))

represents the change in y(t, z) due to the local endogenous process of accumulation, i.e.

the impact of the endogenous variable y(t, z) on the time change of the variable itself,

independent of any spatial interaction. Taking as reference the Solovian model, the shape

of ϕ should reflect the shape of production function, saving behaviour, depreciation rates

of factors and employment growth. In particular, the presence of increasing returns in the

production function; the presence of a nonlinear relationship between saving rates and

income, could make ϕ′ not decreasing and non-monotone (see, e.g., Fiaschi and Lavezzi,

2007).

The main inspiration behind the terms from the second to the fifth of the right-hand

side appearing in Eq. (1) is the so-called Fokker-Planck Equation, that describes the

time evolution of the probability density of a stochastic process obeying a Stochastic

Differential Equation (SDE). They contain differential operators, which belong to the
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language of PDEs, and are particularly effective for describing the various sources of

change in the spatial distribution of y(t, z). In particular, divz is the divergence operator,

i.e. divzf ≡ ∂z1fz1 + ∂z2fz2 , where f = (fz1 , fz2) is any vector field f : Ω → R2 and ∂zi

are the partial derivatives with respect to each of the components of z = (z1, z2). All

the partial derivatives expressed above are to be intended in the spatial sense, i.e. they

measure how the spatial profile is varying along one of the two components, either latitude

or longitude. The term ∇zf stands for the gradient operator, i.e. ∇zf ≡ (∂z1f, ∂z2f)

while finally the term ∆zf ≡ ∂2
z1z1

f + ∂2
z2z2

f is called the Laplace operator and involves

the second order pure partial derivatives ∂2
z1z1

and ∂2
z2z2

.

Since partial derivatives express a measure of differentials across different locations,

the sign of their coefficients reflects the direction driving the reallocation. For example,

as the second term, if the coefficient γS is negative, then the term γSdivz (y(t, z)∇zS(z))

expresses the tendency of y(t, x) to increase in those locations where S(z) is higher, and

to decrease of the same amount where S(z) is lower.2 The definition of higher and lower

is to be intended as a relative comparison between locations, and is provided by the use

of ∇zS(z) which measures the steepness of the transition moving from one location to the

other. This increase-decrease effect is made in such a way that the total amount of mass

in the distribution y which is gained where it increases, it is lost in the other locations.

Hence, the total variation accounted by the second term, when one takes into account all

the locations, is zero (neglecting possible boundary effects). For this reason, we refer to

all the terms in Eq. (1) except for the first one, as purely reallocation term, since they

don’t affect the total amount of y.

The second term of Eq. (1) γSdivz (y(t, z)∇zS(z)) is introduced to take into account

the topography of Ω. In particular, ∇zS(z) indicates the possible pure geographical and

exogenous advantage to move from location z to neighbouring locations. In this regard, we

assume the coefficient γS < 0 so that the reallocation follows the peaks of the exogenous

variable S(z).

The third term on the right-hand side of Eq. (1) γAdivz (y(t, z)∇z (KhA ∗ y) (t, z))

2A simple example in one dimension showing the interpretation of the negative sign is the following:
consider the case where the distribution y(z) is constant, equal to some given value y, and the function
S(z) is a sigmoid of the form S(z) = 1

1+e−z . In this case, the second term of Eq. (1) becomes γSyS
′′
(z).

For z > 0 the second derivative of S is negative, while for z < 0 is positive. Therefore, if γS < 0 this
term is positive when z > 0, implying that the values of y(z) are increasing, and negative for z < 0.
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represents the effect of aggregation of y, i.e. the tendency of y to concentrate in specific

locations. Appendix A shows that this term, and the next two, of Eq. (1) are the

outcome of the agents’ mobility driven by locally maximizing behaviour. The intensity of

this process is measured by γA < 0. KhA is a kernel function with bandwidth h ≥ 0, and ∗

is the convolution operator, i.e. (KhA ∗ y) (t, z) ≡
∫

Ω
KhA (k − z) y(t, k)dk. In other words,

(KhA ∗ y) (t, z) is the weighted sum of all y around location z at period t, where the weights

are defined by kernel KhA ; in particular, the shape of KhA and the value of hA decide how

these weights change with the distance from location z. Since ∇z (KhA ∗ y) (t, z) points

to the directions where the level of y(t, z) is higher when averaged among neighbours, it

plays a similar role of ∇zS(z) as the term on the second line of Eq. (1). An important

difference is that instead of being purely exogenous as for S(z), the direction which drives

the reallocation is now endogenous, since it depends on the spatial distribution of y(t, z).

In particular, we assume γA < 0, so that the reallocation is driven towards those areas

where the local average of y, (KhA ∗ y) (t, z) is higher, providing the intuition on why

this term will tend to concentrate y over space. A standard explanation in economics is

the observed process of aggregation of workers, i.e. the emergence of cities based on the

positive externalities generated by working in places where other activities and/or skilled

workers are already present (Fujita and Thisse, 1996; Krugman, 1998; Moretti, 2004).

The fourth term on the right-hand side of Eq. (1) γR divz (y(t, z)∇z (KhR ∗ y) (t, z))

represents the effect of repulsion of y across different locations, that is the tendency of y

to flow away from locations with higher levels. The intensity of this process is measured

by γR > 0. This term is exactly analogous to the one related to aggregation, except that

the Kernel function KhR can be different from KhA (for example, in the speed of decay as

a function of the distance), and that the sign γR is assumed to be positive, so the effect

instead of being centripetal is centrifugal.

Finally, the last term on the right-hand side of Eq. (1) γD∆zy(t, z), represents the

effect of diffusion across different locations of y, which tends to uniformly spread y over

space. The intensity of this diffusion process in location z at time t depends on the param-

eter γD > 0, and on the sign and magnitude of second derivatives of y(t, z).3 In economics,
3The use of the second derivative can be understood intuitively if one thinks of the one-dimensional

example of a bell-shaped distribution of y(t, z) (e.g. a gaussian distribution). In this case, the spatial
second derivative measure the convexity/concavity of the distribution, being negative in the centre of the

8



the diffusion process can be justified by the random component, generally determined by

hidden characteristics/preferences of agents, in the agents’ choice (Wozniak, 2010).

While is it true that both repulsion and diffusion represent centrifugal forces, they are

very different in nature. While the repulsion effect only takes place in presence of over-

crowding, the diffusion instead is always affecting the dynamics. In particular, diffusion

always tends to equalize all the levels of y(t, z) across locations, while repulsion only lowers

the level of y where density is too high. In other words, in the same way that aggregation

expresses the tendency of individuals to relocate to be closer to each other, repulsion can

be seen as an effect due to congestion, where individuals aim to avoid overcrowded loca-

tions. In economics, a possible source of the observed outflows of individuals from very

crowded locations can arise from the higher housing prices and, in general, from the higher

cost of living in locations with high population density (Krugman, 1998). Moreover, this

tendency is generally justified by the factor-return equalization across different locations

in presence of decreasing marginal returns to factors.4

Summarizing, the coefficients of the Model (1) should respect the following constraints,

which we will check in the estimation:

1. ϕ′ > 0 and ϕ′′ < 0, to reflect the shape of production functions and saving behaviour;

2. γS < 0, γA < 0, to reflect the reallocation due to topography and the aggregation

effect respectively; and

3. γR > 0, γD > 0 to reflect the repulsive effect and the presence of diffusion.

3 From theory to empirics

The estimate of Eq. (1) is not trivial. The typical approach used in growth empirics,

i.e. a log-linear approximation around the steady state/long-run equilibrium, derives a

peak (convex) and positive in the area outside the peaks (concave). Therefore, the effect when γD > 0 is
to decrease where the distribution is convex (i.e. on the local peaks) and to increase in all other regions.
Farlow (1993, p. 12) provides an intuition of why the second derivative is crucial for describing a diffusion
process, which tends to uniformly spread the variable of interest over space.

4Suppose to consider two locations, 1 and 2, with a different endowment of capital k1 > k2 but with
the same production function; then f ′(k1) < f ′(k2) under the hypothesis of f ′′(·) < 0; with free movement
of capital we should observe a flow of capital from location 1 to location 2. The second derivative with
respect to the distribution over space of capital is a proxy for the difference in the level of k1 and k2,
which, in turn, is reflected in the difference in factor returns and, hence, in the intensity of reallocation.
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reduced-form model that is linear with respect to the parameters. Hence, any interesitng

out-of-equilibirum dynamics is excluded by the analysis. In our case, we show that the

econometric model derived by Eq. (1) is already linear by construction and, therefore,

our estimate encompasses all possible dynamics.

Geographical space can be modelled either as a continuous plane in two dimensions

(longitude and latitude) or as a set of discrete locations connected by arcs (Mendes and

Mendes, 2015). The continuous specification does not easily fit the actual data which is

a discrete representation. For this reason, standard spatial econometrics uses a discrete

representation whose core is the specification of the weights matrix which defines the

strength of the interaction among spatial units. In particular, the weight matrix is used

to represent which spatial units are neighbours to each other and might be specified in

several ways, for example using geographical distance, contiguity, economic or cultural

distance (see LeSage and Pace, 2009). The choice of the matrix is crucial in the spatial

analysis and should be driven by the “problem being modelled, and perhaps particular

additional non-sample information which may be available” (Mendes and Mendes, 2015).

As opposed to the spatial econometric literature that uses only the weight matrix to

exploit the geographical structure, we propose to use such structure also to compute an

approximation of partial derivatives, therefore measuring differentials of the variable of

interest across neighbouring locations. The field of numerical methods for PDEs is very

broad and provides a plethora of techniques to approximate partial derivatives numerically

to compute approximate solutions. These techniques range from the simpler ones based

on finite difference method on a regular Cartesian grid (Ames, 2014), to those developed

to work with irregular grids, as in our case. For the case of irregular grids, two main

approaches can be used: the so-called finite element methods, broadly applied in physics

and engineering, where partial derivatives are approximated by using a discrete meshing

of the domain (e.g. triangulations) and exploiting the weak formulation of the PDE; and,

the generalized finite difference methods that use a Taylor approximation to compute

partial derivatives even on irregular grids (Jensen, 1972). We follow the second approach

(see Appendix B for a self-contained overview).

10



3.1 The SARD econometric model

To understand the derivation of the econometric model we have to approximate the spatial

distribution y(t, z) into a set of finite locations. We denote yti ≡ y(t, zi) with zi for

i = 1, . . . N a discrete set of locations. Moreover in the special case where t = 0, we

denote yi ≡ y(0, zi). Let us start by discretizing time. Therefore we approximate the time

partial derivative ∂t by its discrete counterpart ∆tyi ≡ yti − yi (assuming a time step of

unitary size). Secondly, let us focus on the much bigger task of discretizing space, focusing

on the second term of Eq. (1), γSdivz (y(t, z)∇zS(z)). Expanding the expressions for divz

and ∇z as defined in Section 2 by making partial derivatives with respect to (z1, z2)

explicit, we have:

γSdivz (y(t, z)∇zS(z)) = γS [∂z1 (y(t, z)∂z1S(z)) + ∂z2 (y(t, z)∂z2S(z))] . (2)

Hence, we first approximate partial derivatives across space with respect to (z1, z2) as

described in Appendix B. Therefore we introduce the matrices Mz1 ,Mz2 ,Mz1z1 ,Mz1z2 to

approximate respectively the space partial derivatives ∂z1 , ∂z2 , ∂2
z1z1

, ∂2
z2z2

, so that, if one

considers locations zi one has:

[∂z1y(t, z)]z=zi ≈ (Mz1yt)i, [∂z2y(t, z)]z=zi ≈ (Mz2yt)i, (3)

[∂2
z1z1

y(t, z)]z=zi ≈ (Mz1z1yt)i, [∂2
z2z2

y(t, z)]z=zi ≈ (Mz2z2yt)i. (4)

Putting together Eqq. (2),(3) and (4) we derive the discrete counterpart of the second

term in Eq. (1):

γSdivz (y(t, z)∇zS(z)) ≈ γS [Mz1 (yt �Mz1s) +Mz2 (yt �Mz2s)]i ,

with si = S(zi) and where � denotes the element-wise product between vectors.

Therefore, applying the procedure just described to all the expressions in Eq. (1) we

get the PDE-derived econometric model in the finite-state space and in finite time, which
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we label as SARD - Spatial Aggregation Diffusion (Repulsion) - and which is given by:

∆tyi = ϕ1yi + ϕ2y
2
i +

+ γS [Mz1 (y �Mz1s) +Mz2 (y �Mz2s)]i︸ ︷︷ ︸
xSi

+

+ γA [Mz1 (y �Mz1WKA
y) +Mz2 (y �Mz2WKA

y)]i︸ ︷︷ ︸
xAi

+

+ γR [Mz1 (y �Mz1WKR
y) +Mz2 (y �Mz2WKR

y)]i︸ ︷︷ ︸
xRi

+

+ γD [(Mz1z1 +Mz2z2)y]i︸ ︷︷ ︸
xDi

+

+ εi, (5)

where i is the index of the unit, with i = 1, · · · , N , ϕ(·) is defined as ϕ(yi) = ϕ1yi +

ϕ2y
2
i and y is the vector of the variable of interest in the first period of observation.

Mz1 , Mz2 , Mz1z1 and Mz2z2 are matrices N × N used to calculate the approximation

of the first and second derivatives of distribution of the variable of interest in space

respectively (see Appendix B for a complete discussion), WKA
and WKR

are the matrices

N ×N representing the kernel KhA and KhR respectively, and s the vector of exogenous

geographical components. Finally, εi is the stochastic component for unit i.

In matrix form, the empirical model can be rewritten as:

∆ty = ϕ1y + ϕ2y
2 + γSxS + γAxA + γRxR + γDxD + ε (6)

Given that the econometric model is derived from Eq. (1), we expect the following

signs for the estimated parameter: i) γ1 > 0 and γ2 < 0 which should reflect the positive

and marginally decreasing impact of initial conditions on the variation of the variable of

interest over time; ii) γS < 0 representing the spatial effect of reallocating towards more

appealing locations iii) γA < 0 indicating evidence of aggregation effect over space for the

variable of interest; iv) γD > 0, highlighting a diffusion effect over space of the variable of

interest y; finally, v) γR > 0 showing evidence of repulsion effect.
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3.2 Some caveats to our approach

The methodology proposed in the previous section, i.e. taking the discrete form of a

continuous space model, has some intrinsic limitations that we now proceed to explain.

Firstly, we need to highlight that the discretization procedure inherently introduces

a bias in the model. As one approximates a measure of differentials from a discrete set

of values, a discretization error arises. However, discretization errors are proportional

to the distance between the evaluation points, so if the discretization is fine enough the

bias is limited and can be overlooked. If the geographical resolution, i.e. the distance

between georeferenced spatial locations, is too rough, then the model cannot be applied

profitably. To make a concrete example, the current methodology would most likely fail or

produce meaningless results if one tries to apply it to the GDP distribution at the national

level since countries constitute a too-large unit of aggregation. Also, this framework is

currently too general to provide a precise rule of whether the resolution is high enough to

employ the current model successfully. However, one possible indicator that one can look

at to discern if the discretization bias is affecting the result is the sign of the estimated

coefficients. Since the theoretical model in Eq. (1) prescribes the sign of each parameter,

an estimated coefficient whose sign matches the expected one confirms the goodness of the

approximation. Another important element to keep into account is the magnitude of the

spatial correlation among the units of observation. If they are highly correlated, that is

neighbouring locations don’t differ too much in relative terms, then the bias induced from

the discretization is limited even if locations are spread far apart. On the contrary, if the

opposite holds the approximation may be very poor even when the units of observations

are of small size.

Secondly, the present model also imposes limitations on the possible choice of the

spatial matrix WKA
(WKR

analogously). The matrix WKA
derives from the space dis-

cretization of the function KhA , appearing in Eq. (1). Accordingly, it requires to be

defined in terms of relative geographical distance between locations. Therefore, in the cur-

rent framework, we are not allowed to use spatial matrices which are based on contiguity

between areas of observations like N -order contiguity or even K-nearest neighbourhood.

Thirdly, the theoretical framework also imposes the necessity to work with variables
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which are density-like, i.e. rescaled by the area of the unit of observation. This is again due

to the fact that the econometric model is obtained by the discretization of a continuous

space model.

These are currently drawbacks with respect to other spatial econometrics models,

which do not require any relations between the relative size of observations between con-

tiguous locations and their geographical distance. For this reason, the model proposed in

this paper would be more suitable to be employed in all those cases where geographical

data not affected by administrative limitations are available, for example for the Night-

Lights VIIRS5, or the more recent DataForGood6, which are both defined in a uniformly

spaced high-resolution grid. This kind of dataset has also the remarkable feature of having

units of observations with the same geographical size so that there would be no need to

rescale each variable.

4 Empirical application

In this section, we propose an application of the SARD model to the estimate of spatial

distribution dynamics of economic activity in Italy. For this purpose, we decided to use

the income of Italian municipalities, which represents a good proxy for economic activity

with a detailed enough geographical scale.

4.1 Data on Italian municipalities

Italian Ministry of Economy and Finance (Agenzia delle Entrate) releases information at

the municipal level (about 8000 in Italy) on the nominal personal income declared for

tax purposes (IRPEF) for the period 2008-2020 from resident households.7 During this

period, however, Italy was hit by several shocks: the subprime mortgage crisis coming

from the US in 2007-2011, the sovereign debt crisis started in 2011-2013, and the COVID

pandemic in 2020. While the former was very asymmetric over the territory, the other two
5Visible Infrared Imaging Radiometer Suite (VIIRS), from the Suomi satellite launched in 2011 by

NASA and the National Oceanic and Atmospheric Administration (NOAA), https://eogdata.mines.
edu/products/vnl/.

6Data For Good, High-Resolution Population Density Maps from META https://dataforgood.
facebook.com/dfg/tools.

7https://www1.finanze.gov.it/finanze/pagina_dichiarazioni/public/dichiarazioni.php
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were more symmetric although very profound and leading to a period of high instability.

We, therefore, decide to restrict our analysis to the period 2014-2019. As robustness, in

Appendix D, we also include the 2020 year.8

For each municipality, the total declared incomes are divided by the size of the available

land of the municipality, measured in Km2, to make comparable the incomes of municipal-

ities with very different sizes and different types of territory.9 This choice of considering

income density instead of income per capita is driven by the theoretical framework we are

working on.

Figure 1 reports the map of total income per Km2 of about 8000 Italian municipalities

for the years 2014 and 2019 and its variation over the period. The general impression

is of a high level of aggregation in the spatial distribution of income which seems to be

not decreasing over time. We also observe a remarkable difference between the North and

South part of Italy, as well as between inner areas and coastal areas.

In the estimate, we also use the data on the mean altimetry of the municipality coming

from ISTAT as an exogenous variable.

4.2 Estimation results

Similarly to the definition of a weight matrix in the spatial model, for the empirical appli-

cation, we need to define the kernels KhA and KhR , i.e. to set the bandwidth (specifying

within which distance units can be considered as neighbours) and the weight of each

neighbouring unit. In the estimation, we try different specifications of the kernels. In

particular, we use an exponential distance-decay function, that is:

KhA(z) =

 e−||z||βA if ||z|| ≤ hA

0 otherwise,
wKA ij =

 e−dijβA if dij ≤ hA ∀i, j

0 otherwise,
(7)

KhR(z) =

 e−||z||βR if ||z|| ≤ hR

0 otherwise,
wKR ij =

 e−dijβR if dij ≤ hR ∀i, j

0 otherwise.
(8)

8Indeed, differently from the GDP in the personal income we cannot observe a high drop in 2020 for
Italian municipalities. This discrepancy can be explained by the fact that many measures were introduced
by the Italian government to support income over 2020.

9We, therefore, consider the income density of each municipality.
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Figure 1: The map of total income per Km2 of the available land of Italian Municipalities
in 2014 and 2019.

pics/map_incomeKm2_2014.pdf

(a) 2014

pics/map_incomeKm2_2019.pdf

(b) 2019

pics/map_diff_incomeKm2_2014_2019.pdf

(c) 2014-2019

Source: Italian Ministry of Economy and Finance (Agenzia delle Entrate) and ISTAT
(Italian National Institute of Statistics).
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Notice that the discrete counterpart of the kernels KhA and KhR , i.e. WKA
and WKR

, are

non-zero-diagonal differently from the standard spatial econometric literature.10

With this definition of the kernels KhA and KhR even if the two kernels are not the

same, the resulting regressors turn out to be highly correlated. To avoid this issue we

define two completely separated spatial kernels Kshort ≡ KhR and Klong ≡ KhA − KhR .

This reformulation allows us to estimate the parameters of the original model in Eq. (5)

by OLS, but separating the long from the short-range spatial effects, without the problem

of high correlation between regressors. This implies the estimation of the following model:

∆tyi = ϕ1yi + ϕ2y
2
i +

+ γS[Mz1 (y �Mz1s) +Mz2 (y �Mz2s)]i +

+ γlong
[
Mz1

(
y �Mz1WKlong

y
)

+Mz2

(
y �Mz2WKlong

y
)]
i
+

+ γshort[Mz1 (y �Mz1WKshort
y) +Mz2 (y �Mz2WKshort

y)]i +

+ γD[(Mz1z1 +Mz2z2)y]i +

+ εi, (9)

where γlong = γA and γshort = γR + γA. Therefore, in Eq. (9) while the parameter of the

aggregation γA will be directly given by γlong, the one of the repulsion γR will be given by

the difference γshort − γlong.

In the empirical application, we try different values both for hA, hR and βA, βR. In

particular, we consider all the combinations of βA, βR ∈ (0.1, 0.2, 0.3, 0.4, 0.5) and hA, hR ∈

(20, 25, 30, 35, 40, 45, 50) (kilometers) such that hR ≤ hA, which amount at estimating 315

models. In Table 1 we only report the estimated result of the best model, that is the

model with the lowest AICc.

In particular, in Table 1 we show: in column (1) the OLS estimation of a model

that only includes the initial level of income and its square; in column (2) the OLS

estimation also including a variable measuring the altimetry of the municipality (OLS

altim); in column (3) the OLS estimation of a model which includes the initial level
10The matrices WKA

and WKR
are used to approximate an integral in continuous space. Therefore

one has to consider also the value of the function in the centre of the neighbour where integration takes
place, i.e. the diagonal elements.
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of income and its square, as well as our variable proxying for the topography of the

municipality based on the altimetry (S-OLS); in column (4) the OLS estimation of a

model which includes the initial level of income and its square and the regressors relative

to the aggregation and diffusion (AD); in column (5) the OLS estimation of the AD

model which also includes the proxy for the topography (SAD); in column (6) the OLS

estimation of a model which includes the initial level of income and its square and the

regressors relative to the aggregation, repulsion and diffusion (ARD); in column (7) the

ARD model is added with the regressor of the topography (SARD). Finally, columns (8)-

(10) report the estimate of three commonly used spatial models, that is the SLX, LAG

and Durbin respectively.

The models SLX, LAG and Durbin are estimated using a spatial weight matrix W

whose elements are defined as:

wij =

 e−dijβ if dij ≤ D ∀i 6= j

0 otherwise,
(10)

where β ∈ (0.1, 0.2, 0.3, 0.4, 0.5) and D ∈ (20, 25, 30, 35, 40, 45, 50) which amount to esti-

mating 35 models for each type of spatial model considered. In Table 1 we only report

the estimated result over the period 2014-2019 of the best SLX, LAG and Durbin models,

that is those with the lowest AICc. Table 2 in Appendix D is analogous to the period

2014-2020.

Considering the results reported in Table 1, we find evidence of a significant positive

and concave effect of the initial level of income on its variation. The estimated parameters

are very stable across all the specifications, although lower in magnitude and significant

only in the linear term in the SLX, LAG and Durbin models. The inclusion of the altime-

try variable is negative and significant only in the OLS altim and LAG models. Differently,

when the topography is directly considered through our regressor (in S-OLS, SAD, and

SARD models), it turns out to be always positive and highly significant: the higher the

geographical barriers (as the presence of the mountains), the lower the variation of income

towards this place.11 The inclusion of our regressor of topography also leads to a deep
11In the theoretical model of Eq. (1) we assumed the coefficient γS to be negative, to have an effect

that drives the reallocation towards maxima of the exogenous function S(z). Since here S is given by the

18



reduction in the AICc, showing its informative content. This highlights the potential of

our methodology: the exogenous variable given by altimetry has a big informative content

that to be extracted successfully needs to be properly manipulated. The geographic ma-

nipulation of the SARD model (or even S-OLS) appears to better extract such informative

content than the classical spatial econometrics model SLX, LAG or Durbin.

The coefficients relative to the aggregation, diffusion and repulsion effects (γA = γlong,

γD and γR = γshort− γlong ) are always statistically significant at the usual level of signifi-

cance and exhibit the expected sign as prescribed by the theoretical model in Eq. (1). This

confirms on the geographical scale used (i.e. the municipal level) the discretization implies

a relatively small bias. In terms of AICc, the model with the best performance among all

possible variants of SARD models is the one where all the components (ϕ/S/A/R/D) are

present. Although the relative estimated coefficients are very low in magnitude12 their

effect on the spatial dynamic is meaningful (see Section 4.3 for details).

The only model that performs better in terms of AICc is the Durbin model, which

also shows a positive, very high and significant parameter of the spatial lag. This implies

evidence of a strong spatial dependence on the variation of the municipalities’ income.

However, some issues have to be emphasized: firstly we lose the expected concavity of the

initial income terms since the estimated ϕ2 is not significant. Secondly, the altimetry of

the municipality loses all significance, pointing out that all that effect has been absorbed

by some other variables. Thirdly, the estimated ρ corresponding to the spatial lag is

very big and therefore is accountable for the lack of significance of the other estimated

coefficients. It is worth reminding that although the Durbin model has a lower value of

AICc it doesn’t allow to capture the different sources of the spatial dependence.

average altimetry level for each municipality, the rationale is that reallocation is not driven towards the
maxima of S, but on the contrary, the reallocation towards maxima should be discouraged. Therefore
the expected sign is now the opposite, i.e. γS > 0.

12The magnitude of the coefficients reflect the scale of the regressor which in our case is not easy to
measure.
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4.2.1 Analysis of residuals

Figure 2 reports the spatial distributions of residuals for models SARD and spatial Durbin,

for the transition from 2014-2019. We see that the SARD model can better explain the

dynamic of the innermost regions, like the Apennine mountains and the centre of Sicily

and Sardinia islands. This in particular highlights how our model is better able to exploit

the information coming from the altimetry than the classical spatial econometrics models.

Moreover, we also appreciate how the spatial pattern of residuals appears more spotted

between regions of red and blue colours (corresponding to negative and positive residuals)

in the case of SARD models with respect to spatial Durbin, even if the latter performs

better in terms of AICc (see Table 1).

pics/residGARD19.pdf

(a) SARD

pics/residDurbin19.pdf

(b) Durbin

Figure 2: The map of residuals for Italian Municipalities for the period 2014-2019 for
SARD and spatial Durbin.

When looking at the spatial correlograms for Moran’s I and Geary’s C indices (Figure

3), we find weak evidence of additional spatial dependence unaccounted for in both the

SARD and Durbin models, although higher for the SARD. However, the magnitude of

Moran’s I index has a maximum of around 0.03, while Geary’s C index is never statistically

significant.
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pics/correlogramGSARD_I19.pdf

(a) Moran’s I: SARD

pics/correlogramDurbin_I19.pdf

(b) Moran’s I: Durbin

pics/correlogramGSARD_G19.pdf

(c) Geary’s C: SARD

pics/correlogramDurbin_G19.pdf

(d) Geary’s C: Durbin

Figure 3: Spatial correlograms of residuals for Moran’s I and Geary’s C for the period
2014-2019.
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4.3 Counterfactual analysis

To understand if the effect of each identified component of the SARD is relevant to explain

the spatial dynamic of the Italian municipal income, this section presents a counterfactual

analysis. Given our short time-span and the small magnitude of the estimated coefficients,

we perform the counterfactual analysis in forecast for 50 years. First, we compute the

forecasted distribution in 2069, Ŷ 2069, starting from the observed 2019 using the estimated

SARD model. To measure the contribution of each reallocation components of the SARD

model, we set to zero each estimated coefficient γ̂S, γ̂A, γ̂R and γ̂D one by one and we com-

pute a counterfactual forecasted distribution in 2069, Ŷ 2069
γ̂S=0, Ŷ 2069

γ̂A=0, Ŷ 2069
γ̂R=0, Ŷ 2069

γ̂D=0. Figure

4a shows the estimated cross-section densities of income (log) in 2069 of the full model

and the counterfactuals. The densities look similar except around the peak of the distri-

bution, and around 4-4.5 where Ŷ 2069
γ̂A=0 and Ŷ 2069

γ̂R=0 are the only one that appear different

from Ŷ 2069. To measure quantitatively the differences in the forecasted distributions in

Figure 4b we report the normalized spatial Gini indices of each models computed with a

first-order contiguity spatial matrix (Rey and Smith, 2013). The spatial Gini of Ŷ 2069
γ̂S=0 and

Ŷ 2069
γ̂D=0 are not statistically different at the usual levels of significance from that of Ŷ 2069.

Differently, the spatial Gini of Ŷ 2069
γ̂A=0 is lower while that of Ŷ 2069

γ̂R=0 is higher: in absence of

agglomeration the spatial inequality would be lower while in absence of repulsion it would

be higher.

Moreover, we also consider the differences between the forecasted final income and the

initial one in 2019, denoted by ∆SARD = Ŷ 2069 − Y 2019. In Figure 5a we show the dis-

tribution of ∆SARD centred around the median to focus only on the reallocation effects:

blue (red) colour implies that the total variation of municipal income is higher (lower) than

the median variation. We immediately notice that the metropolitan municipalities show a

variation in their income higher than the median, while remote municipalities a variation

lower than the median. Then, we consider the differences between the forecasted distribu-

tion in 2069 obtained with all coefficients and the forecasted counterfactuals, labelled by

∆S = Ŷ 2069− Ŷ 2069
γ̂S=0, ∆A = Ŷ 2069− Ŷ 2069

γ̂A=0, ∆R = Ŷ 2069− Ŷ 2069
γ̂R=0 and ∆D = Ŷ 2069− Ŷ 2069

γ̂D=0.

Figures 5b-5e show the results of the counterfactual analysis: blue (red) colour indicates

that the omitted component would have a positive (negative) effect on the income of
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the municipality. Figure 5b shows that the presence of mountains causes an increase in

income in the surrounding valleys and a corresponding decrease in the mountains them-

selves. Moreover, the coefficient has a negligible effect in all flat areas as expected. In

Figure 5c we see on average a positive effect in metropolitan areas and a corresponding

negative effect in the surrounding municipalities confirming the presence of agglomerative

effects. It is worth to notice a strong positive effect around the main highway and railways

(see e.g., the Po Valley). The impact of the centrifugal components is showed in Figures

5d and 5e: the effect of the two is similar, i.e. negative around metropolitan cities, even

though the repulsive effect appears more spatially correlated due to the presence of the

averaging spatial kernel WKR
.

pics/density_forecastedDistr-eps-converted-to.pdf

(a) Income density (log) in 2069

pics/spatialGini-eps-converted-to.pdf

(b) Spatial Gini in 2069

Figure 4: Counterfactual distributions

5 Concluding remarks

In this paper, we propose a new family of spatial econometric models, which are in-

spired by continuous space-time models defined with the formalism of PDEs. The family

of models proposed represents an alternative description of the space-time dynamics to

other more classical spatial econometrics models, which exhibits some advantages but

also some drawbacks, as discussed deeply in the paper. This new class of models allows

the disentangling of the mechanism of accumulation from that of reallocation, i.e. the
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pics/deltaSARDnorm.pdf

(a) Income variation 2019-2069

pics/deltaS.pdf

(b) Impact of γ̂S

pics/deltaA.pdf

(c) Impact of γ̂A

pics/deltaR.pdf

(d) Impact of γ̂R

pics/deltaD.pdf

(e) Impact of γ̂D

Figure 5: Counterfactual analysis 2019-2069
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construction of exogenous regressors that are cross-sectional zero-sum. In particular, it

makes it possible to further subdivide spatial correlation into different classes of spatial

effects, i.e. aggregation and diffusion. The class of spatial matrices that can be used to

specify these terms are more limited with respect to other spatial econometrics models,

as discussed in Section 3.2. The methodology employed however allows identifying the

effect of aggregation (centripetal) from diffusion (centrifugal) by looking at the sign of the

estimated coefficients. Furthermore, this paper also introduces the possibility to construct

additional exogenous variables by exploiting the topography of the territory not only in

terms of correlation but also in terms of relative differences. Finally, the construction of

differential matrices does not suffer from classical computational issues as in other spatial

econometric models.

As discussed in Section 3.2 this continuous to discrete approach may suffer from the

space granularity of the observations. However, it has been more and more common in

modern times, with the advent of high-resolution satellite images or the participation of

big companies in academic research, to be able to dispose of highly detailed geo-referenced

data, which are not constrained by administrative boundaries. Therefore this paper aims

to make an advancement in the field, proposing a model which is more tailored for the

advent of the resources available to date.
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Appendix

A The micro-foundation of the spatial growth model

This appendix summarizes the main results of Fiaschi and Ricci (2023). Consider a set

of Na rational agents. For the sake of simplicity, we briefly describe here the case where

ϕ ≡ 0, i.e. there is no change in the total number of agents. The case ϕ 6= 0 can be

treated similarly, see for example Catellier et al. (2021). Each agent is identified by index

i with i = 1, . . . , Na, and is characterised by its location in the domain Ω ⊆ R2, labelled

by X i,Na
t . At t = 0 agents are independently distributed at random in the domain Ω

following a common probability density distribution on Ω denoted by y0(z). For t > 0

each agent’s location evolves by obeying the following Stochastic Differential Equation

(SDE):

dX i,Na
t = − γS∇zS

(
X i,Na
t

)
dt+

− γA
1

Na

Na∑
j=1

∇zKhA

(
X i,Na
t −Xj,Na

t

)
dt+

− γR
1

Na

Na∑
j=1

∇zKhR

(
X i,Na
t −Xj,Na

t

)
dt+

+
√

2γD dB
i
t, (11)

where (Bi
t)i∈N is a sequence of independent Brownian motions, and γS and γA < 0, while

γR and γD < 0, to respect the coherence with the phenomena (spatial non uniformity,

aggregation, repulsion, diffusion) we are interested to model.

According to Eq. (11) the spatial distribution of agents is evolving by keeping into

account its relative position with respect to all other agents. In particular, the first term

on the right-hand side of Eq. (11) expresses the tendency of agents to move where the

function S is higher, which can decided by the agents’ spatial distribution and/or the

particular characteristics of different locations. The second and third terms reflect the
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interactions among agents. In particular, by the linearity of the derivative:

1

Na

Na∑
j=1

∇zKhA

(
X i,Na
t −Xj,Na

t

)
= ∇z

(
1

Na

Na∑
j=1

KhA

(
· −Xj,Na

t

))
(X i,Na

t ); and

1

Na

Na∑
j=1

∇zKhR

(
X i,Na
t −Xj,Na

t

)
= ∇z

(
1

Na

Na∑
j=1

KhR

(
· −Xj,Na

t

))
(X i,Na

t ),

that is, each agent is moving along the direction of the gradient of a local average (the

concept of locality is defined by the functions KhA and KhR) of the other agents’ location.

Finally, the fourth term of Eq. (11) represents the agents’ idiosyncratic movements and

is expressed through the independent additive noise Bi
t.

The empirical distribution of agent’s location is:

ENa
t :=

1

Na

Na∑
i=1

δXi,Na
t

, (12)

where δz is the random variable on R2 with unitary mass in the point z. ENa
t is a

continuous set of random variables on R2 depending on time. For any given Na ∈ N

and t > 0, this distribution is singular, in the sense that is a distribution over R2 which

does not admit a probability density function, since it has a positive probability only on

a finite set (corresponding to the location of the Na agents). However, when Na goes to

infinity the family of random variable ENa
t becomes diffuse and converges (in distribution)

to a continuous family of random variables over R2, labelled by Et for any t > 0. The

distribution of Et is now regular and admits a probability density function for every t,

called y(t, z). An explicit expression for y(t, z) for every t is not available. However one

can prove that the probability density function y(t, z) is the solution to Eq. (1) (see

Sznitman, 1991, Section 1.1).

B The computation of the partial derivative matrices

for the estimate

Below we will report a summary of the Generalized Finite Difference Method for calcu-

lating partial derivatives when observations are not equally distributed across the space,
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as originally introduced in (Jensen, 1972). For a self-contained overview of the method

see for example (Benito et al., 2001).

Let y(z) be the value of a function at location z ∈ R2 and define a set of neighbouring

areas zj whose function values are indicated by y(zj), for j = 1, · · · , ns, where ns is the

number of neighbouring locations. Define the following function:

B(z) =
ns∑
j=1

{[
y(z)− y(zj) + hj

∂y(z)

∂z1

+ kj
∂y(z)

∂z2

+

+
1

2

(
h2
j

∂2y(z)

∂z2
1

+ k2
j

∂2y(z)

∂z2
2

+ 2hjkj
∂2y(z)

∂z1∂z2

)]
w(hj, kj)

}2

(13)

where hj = z1 − zj1, kj = z2 − zj2 and w is an appropriate weighting function decreasing

in both arguments and always not negative. The function B(z) is a weighted linear

combination of squares of the error that one has by approximating the function y(zj) with

its second-order linear approximation in the point y(z) for every j = 1, . . . , ns. Therefore

B(z) is close to zero if the second-order Taylor approximation of y(zj) is approximately

correct for all j. Hence, given y(z), y(zj), hj, kj and wj, for j = 1, 2, · · · , ns, Eq. (13)

can be use to calculate the values of
∂y(z)

∂z1

,
∂y(z)

∂z2

,
∂2y(z)

∂z2
1

,
∂2y(z)

∂z2
2

and
∂2y(z)

∂z1∂z2

under

the condition that B(z) is minimized. In particular, due to the quadratic shape of the

function B, this minimization amount to solve the following system of linear equation

(see Benito et al., 2001, p. 6):

Dz =



∂y(z)

∂z1
∂y(z)

∂z2
∂2y(z)

∂z2
1

∂2y(z)

∂z2
2

∂2y(z)

∂z1∂z2


= D



y(z)

y(z1)

y(z2)

· · ·

y(zns)


, (14)

with D ≡ A−1B is a (5 × (ns + 1)), wj = w(hj, kj) and where A is a symmetric (5 × 5)
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matrix defined as:

A =



∑ns

j=1 h
2
jw

2
j

∑ns

j=1 hjkjw
2
j

1
2

∑ns

j=1 h
3
jw

2
j

1
2

∑ns

j=1 hjk
2
jw

2
j

∑ns

j=1 h
2
jkjw

2
j∑ns

j=1 k
2
jw

2
j

1
2

∑ns

j=1 h
2
jkjw

2
j

1
2

∑ns

j=1 k
3
jw

2
j

∑ns

j=1 hjk
2
jw

2
j

1
4

∑ns

j=1 h
4
jw

2
j

1
4

∑ns

j=1 h
2
jk

2
jw

2
j

1
2

∑ns

j=1 h
3
jkjw

2
j

1
4

∑ns

j=1 k
4
jw

2
j

1
2

∑ns

j=1 hjk
3
jw

2
j∑ns

j=1 h
2
jk

2
jw

2
j


,(15)

and B is a (5× (ns + 1)) matrix defined as:

B =



−
∑ns

j=1 hjw
2
j h1w

2
1 h2w

2
2 · · · hnsw

2
ns

−
∑ns

j=1 kjw
2
j k1w

2
1 k2w

2
2 · · · knsw

2
ns

−1
2

∑ns

j=1 h
2
jw

2
j

1
2
h2

12w2
1

1
2
k2

1w
2
2 · · · 1

2
h2
ns
w2
ns

−1
2

∑ns

j=1 k
2
jw

2
j

1
2
h2

2w
2
1

1
2
k2

2w
2
2 · · · 1

2
k2
ns
w2
ns

−
∑ns

j=1 hjkjw
2
j h1k1w

2
1 h2k2w

2
2 · · · hnsknsw

2
ns


(16)

Benito et al. (2001) suggests using the following as a weighting function:

w(dj) = 1− 6

(
dj
dmj

)2

+ 8

(
dj
dmj

)3

− 3

(
dj
dmj

)4

, (17)

where d2
j = h2

j + k2
j is the squared distance between z and zj and dmj is the maximum

distance on all possible neighbouring locations.

The set of all neighbouring locations used to approximate the partial derivatives in

location z is called the star of the location; the choice of the elements of the star is an

important factor to ensure the accuracy of the method. In our framework we will adopt

the closest neighbourhood criterion that is, fixed the number of elements of the star ns,

we select the ns closest locations to each given location.

It is now clear that for every given location z, it is possible to construct the matrix

D and all the partial derivatives in location z up to the second order. We now explain

how to carry out these operations in a compact manner in the case of a finite number

of locations. Assume we have (zi)i=1,...,N a finite number of locations. For each of these

locations denote by Ji = (Ji
k)k=1,...,ns the vector of indices of locations in the star of
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location zi (by definition of star i is not an element of Ji), and by Di the matrix D

associated to the location zi. It is now clear that we have



∂y(zi)

∂z1
∂y(zi)

∂z2
∂2y(zi)

∂z2
1

∂2y(zi)

∂z2
2

∂2y(zi)

∂z1∂z2


= Di



y(zi)

y(zJ
i
1)

y(zJ
i
2)

...

y(zJ
i
ns )


︸ ︷︷ ︸

yi

= Diyi. (18)

Therefore, by denoting with (Di)k, the k-th row of the matrix Di, one has

∂y(zi)

∂z1

= 〈(Di)1,,yi〉 ,

∂y(zi)

∂z2

= 〈(Di)2,,yi〉 ,

∂2y(zi)

∂z2
1

= 〈(Di)3,,yi〉 ,

∂2y(zi)

∂z2
2

= 〈(Di)4,,yi〉 ,

where 〈·, ·〉 is the standard scalar product of Rns+1.

We will now show how to compute all the partial derivatives in all the locations via

single matrix multiplications. We start by setting

y = (y(z1), y(z2), . . . , y(zN))t

and the vectors of partial derivatives in all the locations as

∂y

∂z1

=



∂y(z1)

∂z1
∂y(z2)

∂z1
...

∂y(zN)

∂z1


,
∂y

∂z2

=



∂y(z1)

∂z2
∂y(z2)

∂z2
...

∂y(zN)

∂z2


,
∂2y

∂z2
1

=



∂2y(z1)

∂z2
1

∂2y(z2)

∂z2
1
...

∂2y(zN)

∂z2
1


,
∂2y

∂z2
2

=



∂2y(z1)

∂z2
2

∂2y(z2)

∂z2
2
...

∂2y(zN)

∂z2
2


.
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If we introduce the matrices of size N ×N , Mz1 , Mz2 , Mz1z1 and Mz2z2 defined by

(Mz1)i,j =


(Di)1,1 if j = I,

(Di)1,k+1 if j = Ji
k for some k ∈ {1, . . . , ns},

0 otherwise,

(Mz2)i,j =


(Di)2,2 if j = I,

(Di)2,k+1 if j = Ji
k for some k ∈ {1, . . . , ns},

0 otherwise,

(Mz1z1)i,j =


(Di)3,3 if j = I,

(Di)3,k+1 if j = Ji
k for some k ∈ {1, . . . , ns},

0 otherwise,

(Mz2z2)i,j =


(Di)4,4 if j = I,

(Di)4,k+1 if j = Ji
k for some k ∈ {1, . . . , ns},

0 otherwise,

then one has

∂y(zi)

∂z1

≈ (Mz1y)i ,
∂y(zi)

∂z2

≈ (Mz2y)i ,
∂2y(zi)

∂z2
1

≈ (Mz1z1y)i ,
∂2y(zi)

∂z2
2

≈ (Mz2z2y)i .

C A numerical investigation of the properties of the

spatial growth model

An explicit solution for Eq. (1) is not available in general. We will then proceed to discuss

some of the basic properties of Eq. (1) by numerical simulations. In all examples, we

make some simplifications to better discern the peculiar features of the model from the

exogenous effects related to the particular case considered in Section 4. In particular, we

take the total cross-sectional amount of the variable y of the system constant and equal
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to 1, i.e. we take ϕ ≡ 0. Moreover, we take the exogenous function S(z) to be identically

zero, so that no exogenous variable is present. We also neglect the repulsive effect, i.e. set

γR = 0. Summarizing we consider only the aggregation (γA) and diffusion (γD) effects.

We study the problem on a squared domain Ω = [0, 4] × [0, 4] with a discrete set of

locations uniformly spaced with a distance between contiguous locations of ∆x = 10−2

(i.e. 160′000 total points).

In figures 6 and 7 we set an initial condition that is flat at the centre of the domain and

zero close to the boundary, with some intermediate values in between so that the initial

profile is a continuous function. We then set γA = −0.01, γD = 0.005 and explore the

impacts of changes in hA since the distance at which aggregation takes place is one of the

main characteristics of the system which determines the evolution of the spatial pattern.

Figure 6 reports the distribution dynamics of the baseline model which highlights the

dynamics of aggregation of income, i.e. the emergence of a city, in a central location at

around t = 20. We notice that there is an initial temporary formation of four smaller

clusters around t = 5, which then agglomerates together to contribute to the formation

of the single large cluster in the centre of the domain. In Figure 7 we kept the initial

condition unchanged and only reduced the distance of aggregation from 0.4 to 0.3. The

spatial pattern in the first few periods is roughly the same, exhibiting the formation of

the four temporary clusters around period t = 5. However, since the distance at which

aggregation takes place is smaller, the four clusters are now so far apart that they are not

able to merge anymore. Therefore we observe at the final period t = 20 a configuration

which is made of four separate clusters instead of a single larger one. The spatial pattern

strongly remembers the ones discussed in Krugman (1994) and in Barthelemy (2016, cap.

8).

D The estimation over the period 2014-2020

When looking at the estimates for the period 2014-2020 in Table 2, all the results found

for the period 2014-2019 are confirmed. However, over this period the SARD model is

also the best in terms of AICc.
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Figure 6: The distribution dynamics of y(t, z) over space and time for the baseline case
with γS = 0, γA = −0.01, γR = 0, γD = 0.005, hA = 0.4, Ω = [0, 4]× [0, 4].
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(a) t = 0
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(b) t = 0.5
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(c) t = 1

pics/t=5h=0.3-eps-converted-to.pdf

(d) t = 5
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(e) t = 10
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(f) t = 20

Figure 7: The distribution dynamics of y(t, z) over space and time for the baseline case
with γS = 0, γA = −0.01, γR = 0, γD = 0.005, hA = 0.3, Ω = [0, 4]× [0, 4].
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(a) SARD
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(b) Durbin

Figure 8: The map of residuals for Italian Municipalities for the period 2014-2020 for
SARD and spatial Durbin.
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(a) Moran’s I: SARD
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(b) Moran’s I: Durbin
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(c) Geary’s C: SARD
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(d) Geary’s C: Durbin

Figure 9: Spatial correlograms of residuals for Moran’s I and Geary’s C for the period
2014-2020.
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