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In spatial econometric literature, “the matrix is the fundamental tool used to model the

spatial interdependence between regions. More precisely, each region is connected to a set

of neighbouring regions by means of a spatial pattern introduced exogenously as a spatial

weight matrix W” (Le Gallo et al., 2003, p.110).

The traditional specification of the spatial weights matrix relies on the geographical re-

lation between observations, implying that areal units are neighbours when they share a

common border (first-order contiguity), or the distance between their centroids is within

a distance cut-off value (distance based contiguity). As pointed out by Anselin and Bera

(1998), other specifications of the spatial weights matrix are possible as, for example, weights

reflecting whether or not two individuals belong to the same social network, or based on

some “economic” distance. Although these specifications are desired, the resulting spatial

process must satisfy necessary regularity conditions. “For example, this requires constraints

on the extent on the range of interaction and/or the degree of heterogeneity implied by the

weights matrices” (Anselin and Bera, 1998, p. 244). Moreover, “in the standard estimation

and testing approaches, the weights matrix is taken to be exogenous” (Anselin and Bera,

1998, p. 244). Therefore, the spatial matrix represents the a priori assumption about in-

teraction strength between regions. However, in many cases considerable attention should

be given to specifying the spatial matrix to represent as far as possible economic links (see

Corrado and Fingleton, 2012).

This paper presents a methodology, called Mallow Model Averaging (MMA), which min-

imizes the in-sample mean square error (MSE) and of the out-of-sample one-step-ahead

mean square forecast error (MSFE) for the selection of the spatial weights matrix (Hansen,
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†Università Politecnica delle Marche, e-mail: lisa.gianmonena@univpm.it
‡IMT School for Advanced Studies Lucca, e-mail: angela.parenti@imtlucca.it

1



2008). As discussed in Hansen (2008) the model averaging based on Mallows’ criterion has

some advantages with respect to other two competing methods, i.e. the simple averaging

and the Bayesian averaging. In particular, the simple averaging approach strongly depends

on the set of models considered: “if a terrible model is included in the class of forecast-

ing models, simple averaging will pay the penalty” (Hansen, 2008, p. 342). On the other

hand, Bayesian model averaging suffers from the arbitrariness of the priors specification.

Differently, MMA does not have these problems and optimal MMA weights are asymptot-

ically optimal also with respect to the MSE (Hansen, 2008). In the same vein, Granger and

Ramanathan (1984) consider three alternative methods (A, B and C) to obtaining optimal

combinations of forecasts. According to Method A the optimal weights are the estimated

coefficients of a regression of the observed values on all the competing forecast values with

no constant term. In this case, the combined forecast will be unbiased only when the weights

sum to one. Method B estimates the optimal weights using a restricted regression, where the

sum of squared residuals is minimized under the restriction that the weights add up to one.

Finally, Method C estimates the optimal weights from a regression of the observed values

on all the competing forecast values and a constant term. The latter method is showed to be

the best “because it gives the smallest mean squared error and has an unbiased combined

forecast even if individual forecasts are biased” (Granger and Ramanathan, 1984, p. 201) .

Our methodology search for the optimal combination of different spatial matrices which

minimizes a score inspired to Mallow’s Cp. The optimal model is therefore given by a linear

combination of the M candidate models, which only differ for the use of a different spatial

matrix, with the vector of weights w =
(

w1, . . . , wM
)

,
∑M

m=1w
m = 1 and wm ≥ 0 ∀m, cal-

culated adopting the MMA methodology proposed in Hansen (2008). In short, the method-

ology operates as follows. Given a panel of dimensions N × T , denote by yT the vector of

observed variable of interest in the last period T and by ŷm
T its predicted value calculated by

applying to the initial level y0 the m-th estimated model; the prediction errors êm is given

by:

êm = yT − ŷm
T ; (1)

and the MSFE:

MSFEm = (êm)⊤ êm/N. (2)

As the second step, on the base of MSFEm, we calculate the MMA criterion:

Cn(w) = w⊤ê⊤êw + 2w⊤Ks2 (3)

where ê =
(

ê1, ..., êM
)

are the prediction errors of the M models, K = (k1, ..., kM) is the

vector of the number of parameters in each estimated model; and s2 is the estimate of the

unknown error variance of the true model. We estimate s2 by the prediction errors of the

model with the minimum MSFE. The optimal MMA weights vector is therefore the vector

2



ŵ that minimizes Cn(w) under the assumption that w is a weights vector, i.e.:

ŵ = argmin
w∈[0,1]M and

∑
M

m=1
wm=1

Cn(w). (4)

We apply the proposed methodology to investigate the optimal combination of different

spatial matrices based on several types of proximity in a growth model with spatial depen-

dence inspired by Ertur and Koch (2006) for a sample of 224 EU regions in the period 1991-

2014. In particular, we focus on four types of proximity inspired by Boschma (2005), Arbia

et al. (2010), and Basile et al. (2012), i.e. i) geographical proximity, based on the Euclidean dis-

tance between regional centroids; ii) technological proximity, based on the distance between

regional output composition in 1991 using the same index described in Basile et al. (2012);

iii) social proximity, based on a synthetic distance between seven indicators of regional social

capital in 1991-1993 as described in Basile et al. (2012); and, finally, iv) institutional proximity,

based on the country membership of regions. We find that all types of proximity should

be taken into account in the analysis, with a predominant role of geographical and techno-

logical proximities. We check the robustness of these findings with respect to Method C of

Granger and Ramanathan (1984).

3


