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QDC: Quick Density Clustering of Geo-located Data 

 

Katarzyna Kopczewska 
 

 Abstract—This paper develops the Quick Density Clustering 

(QDC) method which fills the gap in the toolbox of density 

clustering of spatially geo-located points. It uses a K-means 

algorithm which is run on two normalized spatial variables: 

fixed-radius nearest neighbours (NN) and a sum of distances to k 

nearest neighbours (NN) to find diverse densities of points in 2D. 

Clusters detected by QDC classify all (x,y) geo-points to 

high/mid/low-density clusters. QDC uses a standard clustering 

method on transformed data, unlike many other sophisticated 

methods that are run on 2D geo-coordinates. It is a quick, 

efficient, semi-autonomous and big-data tool applicable to static 

and streaming data. A major parameter in QDC, the number of 

K clusters to detect, is interpretation-driven, while the other two: 

the radius for counting NN and the number of NN to sum the 

distances are of secondary importance and in a minor way 

impact the outcome. Classification for new points (prediction) is 

quicker than a typical kNN algorithm by using thresholds of 

spatial variables. The approach is suitable for tracking human 

activity as traffic or crowd detection from spatially geo-located 

mobile data – it finds the high-density points independently of 

phenomenon intensity and works well with streaming data.  

 
Index Terms— spatial density clustering; autonomous algorithm; 

static and streaming clustering, geospatial analysis, spatial 

resolution, pattern clustering, clustering algorithm  

I. INTRODUCTION 

EVELOPMENTS around DBSCAN (Density-based 

spatial clustering of applications with noise) and DPC 

(Density Peak Clustering) channelled density 

clustering methods towards discovering irregular non-spatially 

continuous shapes in 2D [1]. Despite many efforts to upgrade 

those algorithms (overviewed in [2-3]), those solutions fail in 

the case of big data, still require expert knowledge in setting 

parameters, their outcomes are highly dependent on 

parameters and fail in distinguishing diverse density patterns 

for spatially-continuous data (as discussed in Section II). 

DBSCAN classifies points as densely located or as noise, 

similar to core and halo points in DPC. This means that some 

points, dependently on the parameters of the algorithm, are 

classified as high-density, while the rest are labelled as non-

dense. Even if DBSCAN is great at finding irregular shapes 

like groups of points separated with blank spaces, it fails in 

classifying if a given point belongs to one of the 

high/mid/low-density groups. DPC outcomes are similar to 
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DBSCAN, only richer by indicating a point that is the core of 

the high-density group [4].  

However, density analyses get increasing attention. The 

inflow of human activity data like traffic, crowd, mobility, 

infections (e.g. COVID-19), business activity etc. requires 

detecting geo-located points that are highly concentrated in 

space [5]. The major difference is that human activity data are 

much more continuous in space, thus finding irregular patterns 

is of lower interest. More important is distinguishing between 

high-, mid- and low-density clusters. Importantly, human 

mobility or epidemiological events have also three features: 

first, they may be unpredictable and appear quickly and 

unexpectedly; secondly, these are usually massive volumes of 

data; third, their spatial scale and density are unknown – due 

to phenomena itself or data availability. Therefore there is a 

need for an algorithm that detects high-density clusters 

quickly and (semi)autonomously, i.e. without prior 

information on parameters of spatially dense distribution, even 

in big data [6]. The expectation from such an algorithm is to 

classify each point into clusters of different spatial densities.   

The methods that deal with human activity data should 

fulfil some criteria: a) work quickly, b) do not involve deep 

pre-studies to get parameters (best, when their outcome 

weakly depends on parameters set), c) can set the high/low-

density benchmark autonomously or use reference given by 

the user, d) are suitable for big data, e) can easily work with 

stream data, f) have the self-calibrating or at least self-noticing 

mechanism giving an alert if previously calibrated model stops 

be valid due to structural change in new data. This kind of 

(semi)autonomous (self-service) method is desired by users 

due to low computational cost and high analytical gain. The 

proposed QDC algorithm fulfils those criteria.  

The core point in working with density-clustering 

algorithms is the definition of density. The most intuitive 

definitions use aggregates - count the number of units on a 

given territory and find the count per area unit, i.e. inhabitants 

per km2. The wider the territory the less informative the 

measure as it erases the information on local differences. 

DBSCAN and DPC make a ring of a given radius around each 

point and check if the number of units within this circle is 

higher than the threshold – in high-density clusters circles 

include more points than the required threshold. However, 

both parameters, radius and count thresholds are to be set by 

the user and the outcome is highly dependent on their values. 

Additionally, one gets only binary classification – high or low-

density points benchmarked around a given threshold and 

radius. This paper defines spatial density differently – it uses 

two spatial variables: fixed-radius nearest neighbours (NN) 

and a sum of distances to k nearest neighbours (NN). First, for 

each observation, it counts the number of points within a given 
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radius (but it does not compare it to any threshold) – the 

higher the density, the more points around. Secondly, for each 

observation it selects (fixed) k nearest neighbours, calculates 

the distance to each of them and sums them up – the higher the 

density, the closer to k nearest neighbours (and the lower the 

total distance).  

Setting parameters of algorithms is a separate problem of 

machine learning. In supervised learning they can be 

optimized to get the best outcome – often using random or 

grid search to minimize error. Unsupervised learning balances 

between validation to guarantee cluster consistency and 

interpretation of outcomes. Parameters in DBSCAN and DPC 

are arbitrarily decided, which in consequence generates very 

diverse outcomes. In this approach, spatial variables are 

normalized. This automatically benchmarks the clustering 

process to the general situation over the territory and causes 

those parameters do not affect the outcome and work as well 

in a subsample. This limits guessing the proper parameters and 

also reacts to the volume and spatial range of analysed data. 

The number of K clusters is to support meaningful 

interpretation, not only technical optimization.   

The paper shows that spatial density can be detected 

using a K-means algorithm run on spatial variables: fixed-

radius nearest neighbours (NN) and a sum of distances to k 

nearest neighbours1. The algorithm classifies points according 

to autonomously obtained thresholds into K clusters of 

high/mid/low density. The major advantage of QDC is its 

suitability for big data due to many developments in K-means, 

kNN and fixed radius NN and usability in streaming data, 

which makes it a real machine learning solution. QDC works 

differently than typical methods: instead of using sophisticated 

methods on simple data – geo-coordinates [7], it applies a 

standard algorithm to transformed data. The paper shows it is 

a very efficient approach.   

The remainder of the paper is as follows: Section 2 

presents the current state of density clustering algorithms; 

Section 3 describes the novel solution - QDC; Section 4 

presents the prediction mechanism for new data, and Section 5 

gives the conclusions.   

 

II. EXISTING METHODS OF THE DENSITY DETECTION 

Let’s start with the illustration of the analytical problem – 

Fig.1 presents the spatial point distribution of the population 

over the territory as a full set of 65K points (Fig.1a) and a 

subset of 5K points (Fig.1b). The goal of the analysis is to 

divide spatially located points into K density clusters. Even if 

both patterns are similar, operating on a subsample diminishes 

the number of points in the neighbourhood compared with a 

full sample.  

 

 
1 There is coincidence of two symbols ‘k’ in analysis -  they are distinguished 

as K for K-means and k for k nearest neighbours. 

 
 

 
Fig. 1. Point pattern of human settlement (xy points as 

longitude/latitude): a) full sample of ca. 65K points, b) subset 

of randomly sampled 5K points 

 

The most popular method for density-clustering, DBSCAN 

(Density-based spatial clustering of applications with noise) 

classifies each point as core, border or noise [8]. It generates a 

circle of radius eps around each point, counts the number of 

units within this circle and compares with some threshold 

minPts. Core points have at least the threshold number of 

points within the radius eps. Border points do not have enough 

points around, but belong to the radius of the core point. Noise 

points are all other points (Fig.2). In high-density clusters 

circles include more points than the required threshold. 

Beyond many advantages of this algorithm, using DBSCAN 

may be problematic. First, it is not easy to guess properly the 

radius eps and threshold minPts which distinguish between 

high and low density. Secondly, one cannot use the same set 
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of parameters in a full dataset and a subsample. Subsamples 

include automatically fewer points in each radius, thus by 

setting the same minPts and eps one looks for a very different 

spatial structure.  

 
Fig. 2. DBSCAN algorithm 

 

DBSCAN clustering (Fig.3) can detect well high-density 

clusters without specifying how many of them are expected. 

However, the results are highly dependent on parameters 

defined by the user [9]. In Fig.3a DBSCAN with radius 

eps=0.05 and threshold minPts=25 detected 13 clusters, while 

the ratio of noise is 47%. In Fig.3b DBSCAN with radius 

eps=0.15 and threshold minPts=50 detected 9 clusters, while 

the ratio of noise is 9%. As visible from Fig.3, guessing proper 

parameters is a challenging task and together limited 

scalability makes it an unattractive solution for this problem. 

These findings were confirmed with overview studies on 

clustering [6] and underlined the low quality of DBSCAN 

clusters and low efficiency in big data.   

 

 

 
Fig. 3. DBSCAN clustering of subsample a) radius eps=0.05 

and threshold minPts=25; b) radius eps=0.15 and threshold 

minPts=50  

 

The spatial clustering literature usually claims that the K-

means algorithm detects only irregular tile-like shapes [10] – 

that is true when input data are geo-coordinates (x,y). Fig.4 

presents this kind of clustering. The outcome is useful for 

deriving catchment areas e.g. schools, postal offices or sales 

representatives, but also e.g. stratified sampling, spatial cross-

validation. This clustering does not refer to density explicitly – 

clusters include points of high and low density. However, 

point density is referred to in the optimization of the location 

of cluster centroids due to the mass of data in a given location.  

 

 
Fig. 4. K-means clustering of geo-coordinates (K=5)  

  

This shows that none of these approaches is suitable to 

solve the problem of density clustering for spatially 

continuous data as in Fig.1.  
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III. QUICK DENSITY CLUSTERING (QDC): K-MEANS DENSITY 

CLUSTERING USING SPATIAL VARIABLES 

Density clustering methods available in the literature were 

mostly directed towards the detection of irregular patterns [1], 

while human mobility analyses were abandoned or focused on 

other than density aspects [5, 11-12]. Human activity data, 

such as traffic, crowd movement, mobility patterns, infections 

(like COVID-19), or business activities are continuous in 

space and the focus is primarily on distinguishing between 

high, mid, and low-density clusters. It is essential to note that 

human mobility or epidemiological events possess three 

distinct characteristics that should be addressed by quantitative 

solutions. Firstly, they can be unpredictable and occur 

unexpectedly and rapidly, therefore methods should be 

flexible and quick in implementation. Secondly, they usually 

are big data having thousands or millions of observations, 

therefore methods should work well on representative 

subsamples. Third, their spatial and density scale vary due to 

available data or the process itself, therefore methods should 

be robust to the spatial scale.  

Consequently, there is a pressing need for an algorithm that 

can swiftly and (semi)autonomously detect high-density 

clusters, i.e., without requiring prior information on 

parameters of spatially dense distribution and work 

independently of subsample size. The main objective of such 

an algorithm is to classify each data point into clusters based 

on different levels of spatial density. Policy actions can be 

therefore targeted to the specific territory that exhibits a higher 

or lower density of human activity than the “standard one”. As 

shown in the previous section, existing algorithms such as 

DBSCAN or DPC are insufficient in density classification as 

they distinguish density in binary mode: high- and low-

density, they are not autonomous / self-service, and the 

decision on values of parameters is crucial for the outcome 

and they poorly deal with big data and/or subsets. Even if 

there exist autonomous clustering algorithms as the ADP 

algorithm [6], they are not suitable for spatial density 

detection. What is needed, is a mechanism which 

(semi)autonomously determines what the “standard density” is 

(on a given territory in a given time) and then classifies 

observations due to this benchmark. It should be flexible to 

allow for a specific number of clusters.  

 

A. Spatial variables  

The innovation of this paper lies in redefining the approach 

to measure the density around the point. Exiting algorithms 

(e.g. DBSCAN, DPC) struggle to measure it with a single 

criterion as a dummy if the number of points in the specified 

radius exceeds the assumed threshold. QDC method uses two 

criteria (two spatial variables): fixed-radius nearest neighbours 

(NN) and a sum of distances to k nearest neighbours (kNN) 

(Fig.5). Both variables need setting hyperparameters, which 

are of secondary importance due to the normalization 

procedure and should fit the context of social data.  

The first spatial variable, a sum of distances to k nearest 

neighbours (kNN), selects kNN for each point, calculates the 

distance to each of them and sums them up. This is natural that 

the higher the point density, the closer to kNN and the lower 

the total distance. It can take values from almost 0 (in the case 

of a very close neighbourhood) up to an undefined value, 

depending on the spatial range of data and measurement scale. 

The number of k for social data should be around 15-30.  

The second spatial variable, fixed-radius nearest neighbours 

(frNN), counts the number of points within the given radius for 

each observation. However, it does not compare it to any 

threshold (as DBSCAN) but stores the count of observations – 

the higher the density, the more points around. It can take 

values from 0 to n-1, where n is the number of observations in 

the dataset. The radius, fixed for all n points analysed to assure 

comparability, should be around 5-15 km (0.05°-0.15°). There 

were many developments for quick neighbour search 

(overviewed in [13]), often implemented in clustering 

algorithms, e.g. grid search for density peak clustering [14], 

which makes this procedure computationally efficient.  

Fig.5 evidences the idea of spatial variables: for triangle 

point (▲) which has a low-density location, the number of 

neighbours in a fixed radius is low, while the sum of distances 

to k=5 nearest neighbours is high; for square point (▪) which 

has a high-density location, the number of neighbours in a 

fixed radius is high, while the sum of distances to k=5 nearest 

neighbours is low.  

 
Fig. 5. Concept of spatial variables for a given spatial 

distribution of points 

 

B. Normalisation 

An important element of the algorithm is the normalisation 

of spatial variables according to the formula:   

𝑧𝑖 =
𝑥𝑖 − �̅�

𝑠
 (1) 

where xi and zi are the values of the variable before and after 

normalization, �̅� is the average value of a raw variable (before 

normalisation) and s is its standard deviation. After 

normalization values become relative, with the average of zi 

values equal to 0 and the standard deviation equal to 1. It 

automatically determines typical (around the average) and 

untypical (far from the average) values. This approach makes 
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the method much more objective than those that are based on 

arbitrarily set absolute parameters (e.g. DBSCAN, DPC). 

What is more, normalization can be executed with different 

parameters (�̅� and s). They can be taken from the sample – 

especially when the density clustering is to detect the current 

situation in the data. However, one can also use “typical” (if 

known) parameters – especially in a situation of rapid 

changes. This will enable quick detection of changes above / 

below the typical density level. Third, normalization allows 

for the use of subsets of different sizes. Making a subsample 

(e.g. using 10% of data, see Fig.1) changes the parameters of 

distributions, especially the number of points in the 

neighbourhood. Therefore, methods that are based on nominal 

thresholds (e.g. DBSCAN) give poorly comparable results 

between datasets of different sizes. Normalisation in QDC 

eliminates this issue as spatial variables are centred around the 

average value and become relative.   

An important feature of this concept is the relative 

independence of normalized spatial variables from parameters 

such as the number of k nearest neighbours or the size of the 

radius. Fig.6 presents statistical distributions of normalised 

(scaled) spatial variables for data from Fig.1b in two settings: 

counting neighbours in radius r1=0.05 (5 km) and r2=0.15 (15 

km) and counting the sum of distances for k1=10 and k2=30 

nearest neighbours. Such hyperparameters are appropriate for 

social interactions that are by nature narrow over space. 

Radius is expressed in geographical degrees (1°≈111 km) as 

the data are geo-projected locations. The densities of the 

variables mostly overlap – the statistical distribution of the 

sum of distances to k1 or k2 are similar; the same is true about 

the statistical distribution of the number of neighbours in 

radius r1 or r2. This shows that parameters of spatial variables 

are of minor importance for the result as its outcome is weakly 

dependent on the parameters set. The method does not involve 

deep pre-studies to get parameters, as almost any “reasonable” 

parameters allow getting proper results. Therefore it can be 

considered semi-autonomous. The second conclusion from 

that figure is that information included in each spatial variable 

is different, what justifies using them both in the algorithm.  

 

 
Fig. 6. Statistical distributions of normalised (scaled) spatial 

variables with different parameters (for data from Fig.1b) 

C. QDC construction 

The Quick Density Clustering (QDC) method is a K-means 

clustering of two normalised spatial variables. Each of the K-

means clusters represents a separate density group. The 

algorithm requires specifying three hyperparameters: two for 

spatial variables (already discussed number of kNN and radius 

r for frNN), and a number of K clusters. K should be 

interpretation-driven, e.g. two clusters for binary division 

(high/low density), three clusters for benchmarked division 

(low/standard/high density), and five clusters to follow a 

Likert-like scale (very low/low/standard/high/very high 

density), but can also be cross-checked with silhouette 

statistics. The algorithm for QDC is as follows.  

 

Algorithm Quick Density Clustering (QDC) 

CLUSTERING 

k=hyper-parameter, e.g.30  

K=hyper-parameter, e.g. 3 

r=hyper-parameter, e.g. 0.15 

spat.var1 ← ∑dist(knn=k) 

spat.var2 ← frnn(r) 

spat.var1.s ← (spat.var1-mean(spat.var1))/sd(spat.var1) 

spat.var2.s ← (spat.var2-mean(spat.var2))/sd(spat.var2) 

data ← (spat.var1.s, spat.var1.s) 

kmeans(data, K) 

 

CLASSIFYING 

t1←max(min(spat.var1|clust1), …., min(spat.var1|clustK)) 

t1←max(min(spat.var2|clust1), …., min(spat.var2|clustK)) 

    low-density ←spat.var1>t1 

    high-density← spat.var2>t2 

  

 Developments to K-means in terms of its speed and 

scalability [15] make it an attractive algorithm. Fig.7 

illustrates the QDC for population data (5’000 obs.) using 

kNN=10 and r=0.05. Fig.7a shows the relation between both 

spatial variables - the sum of distances to kNN on the x-axis 

and the number of neighbours in fixed radius on the y-axis, 

while colour indicates the division into three clusters. Red 

points represent high-density clusters – they have many points 

in radius (y) and low total distance to kNN (x). Blue points, 

oppositely, represent low-density clusters - they have few 

points in radius (y) and a high total distance to kNN (x). Green 

points represent a mid-density cluster – both spatial variables 

are on its average level. The relation between spatial variables 

is not linear, therefore applying e.g. Pearson correlation is 

useless. Fig.7b illustrates the geographical distribution of 

high/mid/low-density clusters. It is highly coherent with 

“optical inspection” from Fig.1. In the analysed case, the red 

cluster is a metropolitan area, the green cluster are smaller 

cities, and the blue cluster are peripheral/rural areas. Fig.7c 

justifies interpretation-driven division into three clusters – as a 

typical cluster validation measure, silhouette, is the highest. 

However, this tool has only a supportive role. The analyst can 

decide about the desired number of clusters if needed, while 

silhouette should be considered as general guidance. Fig.7d 
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illustrates the feature importance of the K-means algorithm. It 

shows that both spatial variables matter for the miss-

classification rate: ca. 0.43 in the case of the sum of distances 

and ca. 0.30 in the case of fixed-radius neighbours, so both 

should be included in K-means clustering.   

 

 

 

 

 
 

Fig. 7. Quick Density Clustering algorithm for kNN=10 and 

radius=0.05: a) mutual relation between normalized spatial 

variables; b) geo-location of density clusters of the population; 

c) silhouette statistic as a cross-check of the optimal number 

of clusters; d) feature importance for K-means clustering   

 

The core issue of QDC is its relative independence from the 

parameters of spatial variables. Fig.8 presents the alternative 

division into clusters by using different parameters: kNN=30 

and radius=0.15.  What is visible, the mutual relation between 

spatial variables is more diversified (Fig.8a) – this is a natural 

phenomenon as increasing the spatial range of a 

neighbourhood increases diversity. However, the optimal 

number of clusters was also three and feature importance 

reached similar values as in the previous case. The division 

into density clusters is very similar to the previous case – the 

Rand Index comparing both partitioning is 0.92. This low 

sensitivity to values of parameters makes QDC an intuitive 

and easy-to-use robust algorithm regardless of initial 

parameter choice.  
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Fig. 8. Quick Density Clustering algorithm for kNN=30 and 

radius=0.15: a) mutual relation between normalized spatial 

variables; b) geo-location of density clusters of population   

IV.MACHINE LEARNING PREDICTIONS FOR NEW DATA 

A crucial issue of machine learning models is their ability to 

run cluster classification quickly and precisely for new points. 

There are two issues discussed: a) mechanism of classification 

of new points to clusters; and b) automatic flagging of model 

validity in case of streaming data. Those issues are 

interconnected and should be considered jointly.  

QDC algorithm is based on two normalised spatial 

variables. New observation – point to be classified to one of 

the density clusters – usually appears as (x,y) geo-location. 

QDC requires as input the information on the neighbourhood – 

values of spatial variables normalised with the same average 

and standard deviation values as the baseline model. Those 

values are compared with the two-dimensional characteristic 

of clusters (as in Fig.8a) – classification to one of the clusters 

is straightforward, according to the threshold values. The only 

exception are border points between cluster regimes – here the 

classification might be random/fuzzy. In the case of division 

into three clusters (as in Fig.7,8), there are two thresholds t, 

calculated as the maximum of within-cluster minima: 

𝑡𝑘𝑛𝑛𝑑𝑖𝑠𝑡 = max(min(𝑘𝑛𝑛. 𝑑𝑖𝑠𝑡. 𝑠|𝑐𝑙𝑢𝑠𝑡𝑒𝑟 = 1) ,
min(𝑘𝑛𝑛. 𝑑𝑖𝑠𝑡. 𝑠|𝑐𝑙𝑢𝑠𝑡𝑒𝑟 = 2),
min(𝑘𝑛𝑛. 𝑑𝑖𝑠𝑡. 𝑠|𝑐𝑙𝑢𝑠𝑡𝑒𝑟 = 3)) 

(2) 

𝑡𝑓𝑟𝑛𝑛 = max(min(𝑓𝑟𝑛𝑛. 𝑠|𝑐𝑙𝑢𝑠𝑡𝑒𝑟 = 1) ,

min(𝑓𝑟𝑛𝑛. 𝑠|𝑐𝑙𝑢𝑠𝑡𝑒𝑟 = 2),
min(𝑓𝑟𝑛𝑛. 𝑠|𝑐𝑙𝑢𝑠𝑡𝑒𝑟 = 3)) 

(3) 

where knn.dist.s is a normalised spatial variable being a sum 

of distances to kNN neighbours, frnn.s is a normalized spatial 

variable being a number of neighbours in a fixed radius, and 

cluster is a division into K-means clusters. Point belongs to 

the low-density cluster when its knn.dist.s is higher than tknndist, 

which is understood that the nearest k points are located 

relatively far. On the other hand, a point belongs to a high-

density cluster when its frnn.s is higher than tfrnn, what is 

understood that the number of points in a fixed radius is 

relatively high. Other points belong to medium-density cluster.       

There is also a possibility of using a typical for K-means 

approach – assigning a new point to the cluster of its nearest 

neighbour. However, this is a much more computationally 

demanding procedure, as each new point must be compared 

with all existing points to find the nearest neighbour. Multiple 

search procedures are inefficient in big data and the clusters’ 

thresholds approach is much simpler and quicker. 

A huge challenge of all quantitative methods is their 

validity in case of new data. Once the model is calibrated for 

static data and the thresholds of normalised spatial variables of 

density groups are set, one needs an automated solution that 

alerts when data structurally changes. Let’s imagine two 

scenarios for the population. In the first one, new persons are 

coming randomly over space. Each new observation changes 

local density and the number of neighbours – however, as long 

it is random, it does not impact the spatial distribution 

significantly. In the second scenario, new persons are 

accumulating in one place (like a traffic jam, holiday 

destination, big concert etc.). Then it changes the spatial 

pattern and prior parameters – the average and standard 

deviation of spatial variables may be not valid anymore. 

Depending on the type of baseline spatial distributions, each 

new point may change its characteristics (conditional density 

of point pattern, see [16]), and therefore automated streaming 

monitoring of parameters is of high importance.   

QDC can be robust to structural changes by using streaming 

parameters. In the literature one can find a streaming data 

approach to detect outliers in new data in ML research [18-

22]. According to Welford’s online algorithm [17] one can 

easily derive the value of the mean and standard deviation of 

the increased dataset, by updating the existing parameters with 

new data:  

�̅�𝑛 =
(𝑛 − 1)�̅�𝑛−1 + 𝑥𝑛

𝑛
= �̅�𝑛−1 +

𝑥𝑛 − �̅�𝑛−1
𝑛

 (4) 

𝑠𝑛
2 =

(𝑛−2)

(𝑛−1)
𝑠𝑛−1
2 +

(𝑥𝑛−�̅�𝑛−1)
2

𝑛
 for n>1 (5) 

where �̅�𝑛−1 is “old” average, �̅�𝑛 is “new” average, 𝑥𝑛 is a 

value of “new” observation, n is the “new” number of 
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observations, 𝑠𝑛
2 and 𝑠𝑛−1

2  are “new” and “old” unbiased 

sample variance. With each new point appearing for 

classification, one can derive the new normalisation 

parameters of spatial variables (mean and standard deviation). 

They can be easily tested if they are still equal to the baseline 

parameters – using a two-sample t-test for means and an F-test 

for variances. As long as both parameters are statistically the 

same, thresholds of density clusters can be used for assigning 

new points into density clusters. In case the parameters 

decalibrate significantly, one needs to re-run density 

clustering. This automatic alert makes QDC a robust model to 

be applied responsibly.   

V. CONCLUSION 

This paper introduces the Quick Density Clustering (QDC) 

algorithm – a new approach to grouping spatially located 

points into density clusters. It is based on two normalized 

spatial variables: fixed-radius nearest neighbours (NN) and a 

sum of distances to k nearest neighbours which are clustered 

using the K-means approach.  

This method is highly useful in dealing with human activity 

data and it fulfils the criteria of good index. First, it works 

quickly. Secondly, it does not involve deep pre-studies to get 

hyperparameters - a number of clusters is interpretation-driven 

and normalization of both spatial variables makes them 

sample-size independent (they become relative) and causes 

they have highly similar statistical distributions (so their 

parameters do not affect the outcome significantly). Third, it 

sets the high/low-density benchmark autonomously through 

the clustering process, which limits the need for user 

intervention. Fourth, it deals well with big data, while at the 

same time, it yields equivalent results for a subsample. Fifth, it 

can easily work with stream data due to the low-cost 

mechanism of classification of points to density groups. Sixth, 

it has a self-noticing mechanism that gives an alert if the 

previously calibrated model stops being valid due to structural 

change in new data. This solution was implemented in R 

software at Code Ocean [23].  
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