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Vaccination uptake, happiness and emotions: using a supervised 

machine learning approach.   

Abstract 

The COVID-19 pandemic is an example of an immense global failure to curb the spread of a pathogen 

and save lives. To indirectly protect people against a deadly virus, a population needs to achieve herd 

immunity, which is attained either through vaccination or previous infection. However, achieving herd 

immunity by vaccination is preferable as it limits the health risks of disease. As the coronavirus mutated, 

vaccination estimates for achieving herd immunity went from 70% to 90%. In this study, we investigate 

the order of the importance of the variables to identify those factors that contribute most to achieving 

high vaccination rates. Secondly, we consider if subjective measures, including the level of happiness 

and different collective emotions of populations, contribute to higher vaccine uptake. We employ an 

XGBoost machine learning algorithm (and, as robustness tests, a Random Forest and a Decision Tree 

algorithm) to train our data. Our target output variable is the number of people vaccinated as a 

percentage of the population. We consider two thresholds of our output variable, the first at 70% of a 

country's population, corresponding to the initial suggestions to achieve herd immunity, and the second 

with a threshold of 90%, suggested later due to the highly infectious virus. We use a dataset that includes 

ten countries in the Northern and Southern Hemisphere and variables related to COVID-19, vaccines, 

country characteristics and the level of happiness and collective emotions within countries. We find that 

the most important variables listed in reaching the 70% and 90% thresholds are similar. These include 

the implemented vaccination policy, international travel controls, the percentage of the population in 

rural areas, the average temperature, and the happiness levels within countries. It is remarkable how the 

importance of subjective measures of people's emotions and moods play a role in attaining higher 

vaccination levels. As the vaccine threshold increases, the importance of subjective well-being variables 

rises. Therefore, not only the implemented policies and country characteristics but also the happiness 

levels and emotions play a role in compliance and achieving higher vaccination thresholds. Our results 

provide actionable policy insights to increase vaccination rates. Additionally, we highlight the 

importance of subjective measures such as happiness and collective emotions to increase vaccination 

rates and assist governments to be better prepared for the next global pandemic. 
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1. Introduction 

 

The COVID-19 pandemic is an example of an immense global and national failure to curb the spread 

of the virus and save lives. The death toll due to COVID-19 proves the failure's magnitude. On 20 July 

2023, the World Health Organisation (2023) reported that there had been a total of 768,237,788 

confirmed cases of COVID-19, including 6,951,677 deaths. Europe has been the hardest hit region, 

with 2,245,217 deaths, and Africa has the least recorded deaths, with 175,408 deaths (although doubt is 

cast on the African numbers). The high death toll (lagging only behind the Spanish flu and HIV/AIDS) 

and the economic damage to countries, industries and individuals are unmeasurable (Baldwin, 2020; 

Ludvigson et al., 2020; Lu et al., 2020; Fetzer et al., 2020). 

 

Furthermore, COVID-19 not only affected health but also had a profound impact on family functioning 

and well-being. For example, New Zealand found a significant increase in family violence reports to 

police, which ranged from 345 to 645 a day, compared to 271 to 478 a day in the same period in 2019 

(Mental Health and Wellbeing Commission, 2023). Andrade et al. (2022) note that the fear and 

uncertainty of health risks, the stress from restrictions and constraints on everyday life, and financial 

concerns impacted emotional well-being. 

 

During a pandemic, the aim is to stop the spread of the disease and protect individuals against a specific 

pathogen. We know that globalisation, the geography of economic relations and international travelling 

pose significant challenges in stopping the spread of a virus. A population must achieve herd immunity 

to protect people from the disease indirectly. Herd immunity is achieved when a population is immune 

through vaccination or immunity developed through previous infection. However, the World Health 

Organisation (WHO) supports achieving herd immunity through vaccination rather than exposing them 

to the pathogen. To safely achieve herd immunity against COVID-19, it was estimated at the early 

stages of the pandemic that a vaccination threshold of 70% should be achieved (Randolph & Barreiro, 

2020; Bartsch et al., 2020; Goldblatt et al., 2022). However, as COVID-19 evolved, the virus mutated 

and became more infectious, and the estimated vaccination threshold increased to 90% (Plans-Rubió, 

2022). According to Bloom et al. (2021), high vaccination uptake yields sizable and diverse health, 

economic, and social benefits, including herd protection, increased work hours and productivity, and 

potentially improved social equity. In other words, the faster the uptake, the fewer lives are lost, and the 

potentially devastating economic and social impact is minimised.  
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As of 10 July 2023, a total of 13,474,265,907 vaccine doses have been administered. This translates 

into 64.8% of the world population being fully vaccinated1. However, when we disaggregate the data, 

we see the stark inequality between high-income countries, 74.32%, and low-income countries, 27.54% 

(Mathieu et al. (2021). These low vaccination rates in developing and underdeveloped countries, despite 

global partnerships like COVAX, highlight the lack of international support and cooperation. As Sheikh 

et al. (2021) noted, most developing nations lack the financial and technological resources to invest in 

vaccine development. Therefore, relying on developed nations through global cooperation was 

instrumental in vaccinating their people. Unfortunately, in a shameful show of 'individuality', developed 

nations, constituting only 16% of the world population, bought more than half of the vaccines available 

at the start of 2021. This lack of international support and cooperation is seen as one of the biggest 

failures of the COVID-19 pandemic.  

 

Greyling and Rossouw (2022) also argue that this immense failure is partly due to the inability at a 

global and national level to distribute and administer vaccines efficiently. Furthermore, at the national 

level, governments and the public health care systems did not only fail to stop the spread of the virus 

and protect human lives but also failed to adhere to basic norms of institutional rationality and 

transparency, breeding mistrust in governments (Paul et al., 2021; Sallam, 2021).  

 

Considering the abovementioned, our primary aim is to retrospectively evaluate the COVID-19 

pandemic and determine the most important factors to reach vaccination thresholds. increase vaccine 

uptake. Therefore, we will determine the most important factors for achieving herd immunity at the 

70% vaccination threshold, estimated at the beginning of the COVID-19 pandemic and the 90% 

vaccination threshold, as estimated later in the pandemic. A secondary aim lies in determining those 

factors that differ between the 70% to 90% vaccination threshold to see which factors are responsible 

for advancing a population's decision to reach the higher vaccination level. Special consideration will 

be given to whether subjective well-being measures played a role in the decision to be vaccinated since 

we know that negative emotions, such as fear of the side effects of vaccines, influence peoples' attitudes 

towards receiving the vaccine (Greyling & Rossouw, 2022) and that happier people make better health-

related decisions (Anik et al., 2009; Lyubomirsky et al., 2005).  

 

To achieve the aforementioned, we use data from four datasets. The first dataset is extracted from 

Google COVID-19 Open Data2. It provides us with abundant information related to COVID-19 and 

information on population, geographical location, the economy, general health and climate. The other 

three time series datasets are derived from tweets and form part of the Gross National Happiness.today 

 
1 Total number of people who received all doses prescribed by the initial vaccination protocol, divided by the total population 

of the country. 
2 Available from https://health.google.com/covid-19/open-data/explorer 

https://health.google.com/covid-19/open-data/explorer
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project3. These three unique datasets reflect i) the general sentiment and emotions within countries, ii) 

the sentiment and emotions towards vaccines and iii) the sentiment and emotions towards government 

institutions. 

 

We use an Extreme Gradient Boosting (XGBoost) algorithm to build a model to determine the most 

important factors that can predict reaching vaccination thresholds. We chose the XGBoost model since 

it is more efficient, computationally much lighter and has been shown to outperform most supervised 

algorithms (Abdurrahim et al., 2020; Nielsen, 2016). However, we construct two other models using 

Random Forest and Decision Tree algorithms as robustness tests. After the model is built, we test the 

precision of our model's predictions using our test data and calculate the necessary test (fit) statistics, 

i.e., mean squared error (MSE), mean absolute error (MAE) and root mean square error (RMSE). In 

line with expectations, the XGBoost model gives the best-fit measures and delivers the best predictions 

results compared to the other two methods. Consequently, we discuss the results of the XGBoost model. 

Although we also present the results of the other models in Appendix C. 

 

Our results on the importance of the factors that increase vaccine uptake at a 70% threshold and 90% 

threshold overlap with the following factors, vaccination policy implemented, international travel 

controls, the percentage of the population in rural areas and the average temperature. Interestingly, we 

find that the importance of happiness differs between the two thresholds. Happiness is less important in 

achieving the 70% threshold and can generally be reached with policy measures. However, to increase 

the threshold to 90%, the importance of happiness cannot be ignored. The results clearly show that if 

governments want higher levels of compliance and vaccine uptake, subjective well-being measures such 

as mood and emotions must be prioritised. Addressing how people feel, in general, towards vaccines 

and governments is vitally important when policymakers want to push beyond the lower 70% vaccine 

threshold and achieve the "golden standard" of 90% fully vaccinated.  

 

Our study makes several contributions to the existing literature. First, this is the first study conducting 

a post-COVID-19 cross-country analysis of the most important variables to increase vaccine uptake. 

Second, we are the first study to include subjective measures of well-being in our estimations, such as 

happiness levels, people's emotions and their perceptions towards vaccines and governments, to 

establish whether subjective measures play a role in increasing vaccination uptake. Third, we are the 

first to apply supervised machine learning models to determine which factors matter most to achieve 

different vaccination thresholds (please note that our dependent variable is continuous, thus different to 

models in which a binary (mostly a “yes-no” response is used). use various machine learning algorithms 

to train our data and determine which algorithm gives us the best fit, i.e., the most reliable predictions. 

 
3 Available from https://gnh.today/  

https://gnh.today/
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Our XGBoost model can be used as a benchmark for future research related to the most important 

factors for increasing vaccination uptake. Furthermore, this study offers some actionable insights for 

policymakers on increasing vaccination rates to curb pandemics' health, economic and political effects.  

 

The rest of the paper is structured as follows. The next section contains a literature review of studies 

investigating factors influencing COVID-19 vaccination rates. Section 3 describes the data and the 

selected variables, while section 4 outlines the methodology. The results and discussion follow in 

sections 5 and 6, while the paper concludes in section 7. 

 

2. Literature review 

 

Since increasing the uptake of the COVID-19 vaccine was fundamentally important to decrease the 

harm caused to human lives and livelihoods, many studies have focused on predicting factors associated 

with the uptake. However, there are not many studies that used machine learning to determine those 

factors that contribute to higher levels of vaccine uptake. Therefore, the literature review mainly 

discusses studies that relied on survey data and traditional empirical analysis, which also informs our 

discussion in the results section. Studies that used machine learning in their approach conclude this 

section. 

 

 2.1 Factors associated with vaccination uptake: Evidence from survey data 

Regarding individual European country studies, Bajos et al. (2022) and Ward et al. (2020) focused on 

France and used data from the EpiCov survey, and self-collected data, respectively. Gomes et al. (2022) 

conducted a study in Portugal using a community-based survey called the COVID-19 Barometer: Social 

Opinion. These three studies generally concluded that the COVID-19 vaccine uptake was positively 

associated with age, educational attainment and income. According to Bajos et al. (2022), the least 

educated, those with the lowest incomes, and racial minority groups were less likely to accept the 

vaccine, and these differences were maintained or increased over time. Additionally, people's lack of 

trust in the government and scientists to manage the health crisis remained the primary reason for 

refusing to vaccinate. Ward et al.'s (2020) pre-vaccine study also found that individuals feeling close to 

a Far-Right party would refuse the vaccine when it became available. The primary reason any individual 

would refuse the vaccine was that it would not be safe. Gomes et al. (2022) also concluded that higher 

odds of hesitancy were associated with low confidence in Portugal's health services response to COVID-

19 and non-COVID-19 and perceived the measures implemented by the government as inadequate. 
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Cross-country analysis was conducted by Bergmann et al. (2022) and Pronkina and Rees (2022), who 

used the 2021 summer SHARE Corona survey data (administered across 27 European countries). They 

confirmed the results of Bajos et al. (2022), Ward et al. (2020) and Gomes et al. (2022) by finding that 

the probability of being vaccinated increased with age, income, and educational attainment. 

Furthermore, Bergmann et al. (2022) concluded that prior illnesses were associated with a higher 

willingness to vaccinate. Interestingly, there was no clear and significant effect of subjective health and 

no strong effects with mental health issues were found. Pronkina and Rees (2022) argued that people 

who express trust in others are more likely to be vaccinated, while risk aversion and frequency of 

praying (a proxy for religiosity) were negatively correlated with the probability of being vaccinated 

against COVID-19. Furthermore, Europeans aged 50 and older did not base their decision to vaccinate 

against COVID-19 on case counts or excess mortality during the pandemic. 

Corcoran et al. (2021), Czeisler et al. (2021), El-Mohandes et al. (2021), and Gatwood et al. (2021) 

found that Americans who express conservative political or religious beliefs are, on average, more 

vaccine-hesitant than those who do not although the relationship between political beliefs and COVID-

19 vaccination hesitancy appears to be considerably more nuanced in Europe than it is in the United 

States (Ward et al., 2020; Lindholt et al., 2021; Raciborski et al., 2021; Bíró-Nagy & Szászi, 2022; 

Wollebæk et al., 2022). COVID-19 vaccine hesitancy is especially prevalent among individuals who 

express distrust in government and scientists (Kerr et al., 2021; Latkin et al., 2021; Lindholt et al., 2021; 

Rozek et al., 2021; Bajos et al., 2022).  

 

 2.2 Factors associated with vaccination uptake: Evidence from machine learning 

In terms of previous machine learning studies, Lincoln et al. (2022) used Random Forest to probe for 

the optimum prediction accuracy for vaccine hesitancy and to find an economical model based on a 

selection of common global predictors. They used SHapley Additive exPlanations (SHAP) and 

permutation feature importance to estimate the importance of each variable in their model across their 

sample of five advanced countries (U.K., USA, Australia, Germany and Hong Kong). The authors found 

that by using only twelve variables (the combined most important variables from permutation feature 

importance and SHAP), they could achieve an 82% accuracy in predicting vaccine hesitancy, with the 

most crucial factors being vaccination conspiracy beliefs and a lack of confidence in governments, 

companies, and organisations in handling the pandemic (i.e., pandemic conspiracy beliefs). 

Previous studies have successfully used XGBoost-based predictive models to predict influenza vaccine 

uptake. Shaham et al. (2020) used primary data for 250,000 Israelis collected between 2007 and 2017 

to predict whether a patient would get vaccinated in the future. Their XGBoost-based predictive model Commented [GT1]: Thus the outcome variable is at 
individual level - a yes no answer? 
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achieved a ROC-AUC4 score of 0.91 with accuracy and recall rates of 90% on the test set. Prediction 

relied mainly on the patient's individual and household vaccination status in the past, age, number of 

encounters with the healthcare system, number of prescribed medications, and indicators of chronic 

illnesses. Using the XGBoost regressor, Cheong et al. (2021) used sociodemographic data to predict 

vaccine uptake across counties in the United States (U.S.). Their model predicted COVID-19 

vaccination uptake across U.S. counties with 62% accuracy. The results from their permutation analysis 

and SHAP revealed the most important factors top significant features found to drive their predictive 

model were geographic location (longitude, latitude), education level (per cent of adults with less than 

a high school diploma, per cent of adults with a bachelor's or higher), and online access (households 

with broadband internet). 

Also focusing on the US, Osman and Sabit (2022) use state-level vaccination rates to identify the most 

critical features that can predict which states will meet the vaccination threshold of 70%. Relying on 

Chi-square Automatic Interaction Detector (CHAID), a decision tree algorithm, the authors include 

several variables that may influence the state-specific vaccination rate. They categorise the variables 

into four groups: economic indicators, COVID-19-related indicators, Google mobility data, and 

COVID-19-related policy measures. After using three different model specifications, they discovered 

that workplace travel, the political affiliation of the governor, and the vaccine mandate in schools were 

the top three features of achieving the vaccination threshold.  

 

In the above-mentioned studies related to machine learning applications, the outcome variables were 

binary variables, for example – the decision of a person to be vaccinated or not, or will a certain 

vaccination threshold be reached or not. In these studies, the most important factors to reach success 

(yes), during  COVID-19 were determined. Our study differs from the previous literature in that we 

have the benefit of hindsight, thus we investigate the most important factors that contribute to reaching 

herd immunity (at different levels of 70 per cent or 90 per cent) and how the factors change when higher 

levels of herd immunity are to be reached. Our outcome variable is the percentage of the population 

that was vaccinated as a percentage of the population of a country (thus the measure that is used to 

determine herd immunity), it is a continuous variable, which represents a high level of variance and is 

not constricted to only a yes-no answer. Furthermore, our study includes a wide-reaching dataset 

including variables related to COVID-19 regulations, vaccination policies, country characteristics and 

very importantly subjective measures of well-being (not included by other studies) to highlight the 

importance of moods and emotions when higher vaccination thresholds must be attained.   

 

 
4 Area Under the Curve of the Receiver Operating Characteristic curve.  

Commented [GT2]: Once again a yes no answer - thus 
who will take up vaccines (at a certain level ) and who will 
not - binary outcome variable 

Commented [GT3]: Once again the question - yes/no will 
they make the 70 per cent 

Formatted: Highlight

Formatted: English (New Zealand)
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3. Data and variables 

 

3.1. Construction of datasets 

The period under consideration is from 1 December 2020 to 16 September 2022. This period includes 

the first vaccine rollout and ends when new COVID-19 tests reach almost zero in all countries. 

Consequently, the main data source related to COVID-19, the COVID-19 Government Response 

Tracker dataset (Hale et al., 2021), was discontinued on 31 December 2022. We consider the data to 

find a retrospective view of those factors that mattered most for higher vaccination rates. 

We use a merged dataset, including the Google COVID-19 Open Data5 and our three constructed time-

series datasets derived from tweets6. The three Twitter datasets reflect i) happiness levels and emotions 

of countries, ii) happiness levels and emotions towards vaccines and iii) happiness levels and emotions 

towards government institutions. The construction and validation of the Twitter datasets are explained 

in Appendix A.   

This section briefly explains the Twitter data (see Appendix A for a full explanation). Tweets are 

extracted in real time based on a geographic bounding box corresponding to the country in question. 

Next, we use sentiment and emotion analysis to score the tweets. We aggregate the scores and derive 

indices for happiness and each of the eight emotions. For the Twitter datasets related to the government 

and COVID-19 vaccines, we used specific keywords to identify those tweets directly related to the 

topic.  

To derive the dataset related to the COVID-19 vaccines, we extracted tweets using the keywords: 

vaccinate, vacc, vaccine, Sputnik V, Sputnik, Sinopharm, Astrazeneca, Pfizer (if NEAR) vaccine, Pfizer-

BioNTech, Johnson & Johnson, and Moderna.  

For the dataset related to governments, we extracted tweets using the keywords: government, 

parliament, ministry, minister, senator, M.P.s, legislator, political, politics, prime minister. 

After extraction, we analysed the text of the tweets to determine the noise captured in the tweets. 

Subsequently, we found that the noise was minimal in both instances. 

The Google COVID-19 Open dataset is rich and includes variables related to COVID-19 cases, deaths, 

vaccinations, demographic, economic, geographical, climate, health, health infrastructure and health 

care.   

3.2 Data cleaning and validation 

 
5 Available from https://health.google.com/covid-19/open-data/explorer 
6 Available from https://gnh.today/  

https://health.google.com/covid-19/open-data/explorer
https://gnh.today/


 

9 
 

After merging the datasets from section 3.1, we had an initial merged dataset containing 145 variables. 

As a first instance, we set about to identify missing data. If the data was randomly missing with less 

than 3% overall missingness, we imputed the data, by either using the mean or the previous data point, 

for example, population size. Secondly, we dropped variables from our dataset with high missingness 

levels. For example, international support (67% missingness), emergency investment in health care 

(68% missingness) and mobility regulations (74% missingness), which reflects the strong regulations 

implemented during the first lockdowns in countries, such as access to retail and recreation, grocery 

stores, pharmacies and parks, were dropped. Thirdly, we removed highly correlated data so that only 

one of the variables remained in the dataset, for example, cumulative confirmed cases and cumulative 

tested cases; this eases the interpretation of the results.  

Once the data was cleaned, we were left with 69 variables (including our outcome variable), which we 

classified into five categories (see section 3.4). Subsequently, these variables were used in the 

supervised algorithms (see sections 4.1-4.3) to train the models. We have 6530 observations which 

means we have 653 (just short of two years) observations per country in our sample.   

In our study, the data comprising 69 variables are split into a training and testing dataset with an 80:20 

split on all data, with the evaluation done on the unseen testing data.  

 

 

 

6.33.3 Target/outcome variable 

Our main variable of interest is the country-level vaccination rate. We calculate vaccination rates as the 

percentage of the vaccinated population among those 18 and older as a percentage og the total 

population in the respective countries. This is in line with studies such as Randolph and Barreiro (2020), 

Bartsch et al. (2020) and Goldblatt et al. (2022). 

In our sample, nine out of the ten countries met the lower threshold of 70% (see Table 1); South Africa 

lagged behind, reaching a mere 32.6%. Therefore, our 70% threshold model was reachable for the 

countries in the developed world but not for our developing country, South Africa (likely to be the same 

in other developing and underdeveloped countries). However, none of the countries in our sample 

achieved the higher 90% threshold, with Spain coming closest with 87%.  

Table 1. Maximum vaccination rates on 16 September 2022 

Country Percentage of the population vaccinated on 

16 Sept 2022 

Australia 85.35 

Belgium 76.19 
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Germany 76,43 

Spain  86.58 

France 80.07 

Great Britain 76.15 

Italy 79.46 

The Netherlands 69.19 

New Zealand 85.67 

South Africa 32.64 
Source: Authors' own calculations 

 

3.4 Predictor variables/features 

As mentioned in section 3.2, our models include 68 variables (apart from our outcome variable) to 

determine those factors most important for country-specific vaccination thresholds. We remind the 

reader that two variables, international support and emergency investment in health care, were not 

included as predictors in our models due to their high levels of missingness, 67% and 7468%, 

respectively. We acknowledge that these variables could have ranked among the most important 

variables and potentially have been included in the top ten. Therefore, when we report the results of our 

models, their absence should be kept in mind. 

We categorise the variables into five groups: demographic, geographical, economic, COVID-19-related 

indicators and COVID-19-related policy measures. The COVID-19-related and policy data are high-

frequency daily data, while the demographic, geographical and economic data are more stable over 

time. Table 2 gives an abbreviated list of the variables included in the models. For a full list, see 

Appendix B. 

 Table 2. An abbreviated list of variables 

Variable Description Scale Coding Source 

Vaccination 

policy 

Policies for 

vaccine 

delivery for 

different 

groups 

Ordinal 

scale 

0 - No availability 

1 - Availability for ONE of following: key 

workers/ clinically vulnerable groups (non-

elderly) / elderly groups 

2 - Availability for TWO of following: key 

workers/ clinically vulnerable groups (non-

elderly) / elderly groups 

3 - Availability for ALL of following: key 

workers/ clinically vulnerable groups (non-

elderly) / elderly groups 

4 - Availability for all three plus partial additional 

availability (select broad groups/ages) 

5 - Universal availability 

Hale et al. (2021) 

Average 

temperature 

Average 

temperature in 

the country 

Celsius  World Bank 

(2023a) 

Population 

density 

People per 

square 

kilometre of 

land area 

  World Bank 

(2023b) 
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Workplace 

closing 

Record 

closing of 

workplaces 

Ordinal 0 - no measures 

1 - recommend closing (or recommend work 

from home) or all businesses open with 

alterations resulting in significant differences 

compared to non-Covid-19 operations 

2 - require closing (or work from home) for some 

sectors or categories of workers 

3 - require closing (or work from home) for all-

but-essential workplaces (e.g. grocery stores, 

doctors) 

Blank - no data 

Hale et al. (2021) 

Restrictions 

on gatherings 

Record limits 

on gatherings 

Ordinal 0 - no restrictions 

1 - restrictions on very large gatherings (the limit 

is above 1000 people) 

2 - restrictions on gatherings between 101-1000 

people 

3 - restrictions on gatherings between 11-100 

people 

4 - restrictions on gatherings of 10 people or less 

Blank - no data 

Hale et al. (2021) 

GNH Happiness Ordinal Score per hour ranges from 0 to 10, with higher 

values indicating higher happiness. To generate 

daily data, the mean GNH per day is calculated.   

 

Greyling et al. 

(2019) 

Source: Multiple as specified within Table 2 

 

4 Methodology 

The methodology first explains the different machine-learning algorithms utilised and how we applied 

each algorithm to construct the models (training the models). We start with the XGBoost (our algorithm 

of choice) and include a Random Forest and Decision Tree algorithm as robustness measures. Next, we 

explain how we trained the models, and lastly, we describe the fit statistics used to evaluate the models. 

4.1 Extreme Gradient Boosting (XGBoost)  

To determine those factors most important in achieving our vaccination thresholds of 70% and 90%, 

we rely on the XGBoost method. It should be noted that traditionally, XGBoost models were used where 

only a binary outcome was considered (limiting the prediction to either an up or down or a yes and no 

option). However, we adjust the algorithm to consider a continuous dependent variable since our 

model's predictions are not limited to a binary outcome but to various rates.  

XGBoost is an end-to-end tree-boosting system (Chen & Guestrin, 2016) and is a powerful supervised 

learning approach to classification and regression tree models based on ensemble methods. The 

scalability of XGBoost allows for a system that runs ten times faster than existing popular solutions on 

a single machine. As it is a gradient-boosting algorithm, XGBoost combines predictions from decision 

trees. XGBoost creates a better overall model while boosting it, continuously rebuilding it by focusing 

on the previous models' weaker points. 

More specifically, the XGBoost algorithm works by assigning weights to all the independent variables, 

which are then fed into the decision tree as a simple method to recursively split the data into smaller 

groups to predict the target variable. A single decision tree would not work well on complex problems, 
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so through the boosting phase, the weights of variables predicted wrong by the first decision tree are 

increased, and these variables are then fed to the second decision tree. Therefore, an ensemble method 

combines multiple trees to build a single model sequentially, focusing on the decision trees that did not 

perform as well and combining these to create a stronger and more precise model. See Fig 1 for a brief 

illustration of how gradient tree boosting works.  

 

Fig 1. Illustration of how gradient tree boosting works  

 

In all models, XGBoost minimises a regularised objective function which consists of two parts (see 

equation 1). The first part is a convex loss function (based on the predicted and target outputs) and 

measures how predictive our model is with respect to the training data. The training proceeds iteratively, 

adding new trees that predict the residuals or errors of prior trees that are then combined with previous 

trees to make the final prediction. In our model, gradient descent7 optimisation is used to minimise the 

loss. The second part is a term inserted to reduce the risk of overfitting, which incorporate two steps: 

regularisation and pruning. The regularisation term for model complexity (in other words, the regression 

tree functions) penalises the model by adding extra terms (𝑘 times iteration) to the objective function, 

thus discouraging the model from becoming too complex. At the same time, pruning removes the nodes 

in decision trees that do not contribute significantly to the model's performance. 

Therefore, following Liang et al. (2020), the objective function that is optimised in our model is 

specified in equation (1) as: 

 
7 Gradient descent is an iterative first-order optimisation algorithm used to find a local minimum/maximum of a given function. 

It trains machine learning models by minimising the loss incurred between predicted and actual results. 
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𝑂(𝜃) = ∑ 𝑙(𝑦𝑖 , �̂�𝑖) +

𝑛

𝑖

∑ 𝜆(𝑓𝑘) + 𝑐

𝑘

1

 

            (1) 

Where ∑ 𝑙(𝑦𝑖 , �̂�𝑖)
𝑛
𝑖  is the loss function, ∑ 𝜆(𝑓𝑘)𝑘

1  is the regularisation term, and 𝑐 is the constant. In 

turn, the regularisation term can be further explained in equation (2): 

𝜆(𝑓𝑘) = 𝛿𝐻 +
1

2
𝜓 ∑ 𝑤𝑗

2

𝑇

1

 

            (2) 

Where 𝑇 stands for the number of leaves, 𝛿 represents the complexity, and 𝜓 is the penalty parameter 

(Liang et al., 2020). 

Other than performance alone, XGBoost is computationally much lighter than, for example, the 

Random Forest method and has demonstrated greater accuracy over other methods. For example, 

Abdurrahim et al. (2020), comparing the accuracy of different predictive modelling algorithms, shows 

that XGBoost shows the highest accuracy score compared to other methods such as logistic regression, 

naive Bayes classifier, decision trees, and random forest. Although, in our study, we use Random Forest 

and Decision Trees to see if it gives us the same collection of relevant variables since the main focus of 

this study is to determine the major drivers to attain a vaccination threshold (see sections 4.3 and 4.4). 

Furthermore, Nielsen (2016) demonstrated that XGBoost learns better tree structures over decision tree 

models that use gradient boosting since XGBoost uses Newton boosting instead. 

Multiple combinations were tested for the XGBoost model in our paper, and a tree depth of seven was 

selected since it delivered optimal results. Therefore, our XGBoost model is defined in equation (3) as: 

 

𝐹𝑀(𝑥) =  𝐹0 + 𝑣𝛽1𝑇1(𝑥) + 𝑣𝛽2𝑇2(𝑥) + ⋯ + 𝑣𝛽𝑀𝑇𝑀(𝑥)   (3) 

 

Where 𝑀 is the number of iterations. The gradient boosting model is a weighted (𝐵1 … 𝛽𝑀) linear 

combination of simple models (𝑇1 … 𝑇𝑀). 𝐹𝑀(𝑥) is the vaccination threshold as described in section 

3.3. 

 

ConstructingBuilding the XGBoost model  
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To build the model, we first started by using all the default settings of the XGBoost algorithm on the 

training data and refined the parameters afterwards. We started by refining the depth of the trees and 

tested depths between three and ten using the value with the lowest root mean square error (RMSE) 

(see section 4.4.3). The final tree depth was selected as seven, resulting in the lowest RMSE. The 

number of iterations is set to 100, with a termination clause added to stop the algorithm if the RMSE 

does not decrease after 5 iterations. After completing the refining stage, the model reaches the lowest 

RMSE at 16 iterations. 

 

4.2 Random Forest 

As mentioned in section 4.1, we want to see if the XGBoost model's results related to the most important 

variables are resilient. Therefore, we use an alternative tree-based machine learning approach to see if 

it gives us the same collection of relevant variables since the main focus is determining the major factors 

associated with reaching a vaccination threshold (70% and 90%, respectively). We are more concerned 

with whether we acquire the same set of variables than with the order in which these variables are 

important. 

For this purpose, we employ the Random Forest and Decision Tree (see section 4.3) models. The 

Random Forest algorithm (Breiman, 2001) is an ensemble method using bootstrap aggregation to 

produce multiple independent models to be combined to finalise the predictions. 

The Random Forest process uses subsets of the training data to build decision trees. The training data 

subsets are generated by sampling with replacement bootstrap samples from the training data. The 

decision tree created using the bootstrap sample can then only evaluate the parameters that are a part of 

the subset; this reduces the risk of overfitting. After training multiple decision trees, the predictions' 

averages are taken to get the final prediction output. 

A critical characteristic of Random Forests is that they produce measures of variable importance that 

may be used to find the most important predictor variables (Hapfelmeier et al., 2014; Breiman, 2001). 

It also works well with small sample sizes and highly correlated sample features (Strobl et al., 2008). 

Random Forest ranks the variables in terms of a 'mean decrease in accuracy' (MDA). The MDA score 

indicates the accuracy lost when each variable is removed from the model. The variables are listed in 

order of decreasing relevance. 

For the Random Forest model in this paper, we follow the specifications set out in the XGBoost model 

and set the depth of the decision trees as seven, with a total of 200 trees. We also rely on MSE, MAE 

and RMSE as evaluation metrics.    

ConstructingBuilding the Random Forest Model 
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Similar to the XGBoost model, we first started by using the default Random Forest algorithm on the 

training data and refined the parameters afterwards. We set the depth of the trees to seven to be 

consistent with the XGBoost model. Initially, we used 20 trees, but after some investigation, the mean 

squared error (MSE) (see section 4.4.1) only started converging with 50 trees. We finally steeled on a 

total of 200 trees as it gives good results while not being overly computationally expensive. 

 

4.3 Decision trees 

Our last robustness measure uses a Decision Tree algorithm, a non-parametric supervised learning 

algorithm for classification and regression tasks. It has a hierarchical tree structure consisting of a root 

node, branches, internal nodes and leaf nodes. Please see Fig 2 for a brief illustration of how Decision 

Trees work. 

Decision trees comprise many nodes that form a tree when put together; each of these nodes represents 

decisions made that split the data. The decision of which attribute to use for the split at each node is 

made by optimising some criterium; in our case, the mean square error is minimised. 

 

Fig 2. Illustration of how Decision Trees work 

 

As shown in Fig 2, a decision tree starts with a root node with no incoming branches. The outgoing 

branches from the root node feed into the internal nodes, also known as decision nodes. Based on the 

available features, both node types conduct evaluations to form homogenous subsets denoted by leaf 

nodes or terminal nodes. The leaf nodes represent all the possible outcomes within the dataset. 
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Decision Tree learning employs a divide-and-conquer strategy by conducting a greedy search to identify 

the optimal split points within a tree. This process of splitting is then repeated in a top-down, recursive 

manner until all or the majority of records have been classified under specific class labels. Whether or 

not all data points are classified as homogenous sets largely depends on the decision tree's complexity. 

Smaller trees can more easily attain pure leaf nodes—i.e., data points in a single class. However, as a 

tree grows in size, it becomes increasingly difficult to maintain this purity, and it usually results in too 

little data falling within a given subtree. When this occurs, it is known as data fragmentation, which can 

often lead to overfitting. 

 

As a result, decision trees prefer small trees, which is consistent with the principle of parsimony in 

Occam's Razor; that is, "entities should not be multiplied beyond necessity." Said differently, decision 

trees should add complexity only if necessary, as the simplest explanation is often the best. To reduce 

complexity and prevent overfitting, pruning is usually employed; this is a process which removes 

branches that split on features with low importance. The model's fit can then be evaluated through the 

process of cross-validation. Another way that decision trees can maintain their accuracy is by forming 

an ensemble via a random forest algorithm; this classifier predicts more accurate results, particularly 

when the individual trees are uncorrelated with each other. 

 

ConstructingBuilding the decision trees model  

We follow the specifications set out in sections 4.1 and 4.2 for the Decision Tree model in this paper. 

The number of nodes in the decision tree is 8. We also rely on MSE, MAE and RMSE as evaluation 

metrics.    

    

4.4      Evaluation 

Model evaluation is the process to use metrics to analyze the performance of the model, thus how 

well the model generalizes future predictions. There are many metrics like Accuracy, Precision, 

Recall, F1 score, Confusion Matrix, and various error calculations such as the Root Mean Square 

Error.  

 

The first group is applicable to classification models and models in which the predicted outcome 

variable is discrete (or binary). However, our dependent variable (predicted variable) is a continuous 

variable (vaccinated population/total population) to evaluate the performance of the models we 

consider different error calculation measures as they summarise how close the prediction is to the 

actual value.  

 

4.4  
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WFor our models, we consider the use Mean Absolute Error (MAE), the  mMean Ssquared E error 

(MSE), mean absolute error and Rroot Mmean Ssquare Eerror (RMSE),  as the usual metrics, such as 

accuracy and recall, cannot be used because we are predicting a continuous variable. Therefore, we do 

not have perfect predictions, as is the case when you use a discrete variable. 

4.4.1 Mean squared error 

The mean squared error (MSE) evaluates the proximity of a regression line to a group of data points. It 

is a risk function that corresponds to the predicted squared error loss value. MSE is computed by 

calculating the average of the squared mistakes resulting from a function's data, especially the mean. 

From equation (4), we see that the MSE is calculated by taking the observed value (𝑦𝑖), subtracting the 

expected value (�̂�𝑖), and then squaring. Repeat for every observation. Afterwards, divide the total by 

the total number of occurrences (𝑛) by the sum of the squares of the values. 

𝑀𝑆𝐸 =
1

𝑛
 ∑(𝑦𝑖 − 𝑦�̂�)

2

𝑛

𝑖=1

 

   (4) 

Therefore, the MSE measures the error in prediction algorithms. This statistic quantifies the average 

squared variance between observed and predicted values. Squaring the differences removes negative 

mean squared error differences and guarantees that the squared mean error is always larger than or equal 

to zero. The value is usually always positive. When there are no errors in a model, the MSE equals 0. 

Moreover, squaring magnifies the effect of greater inaccuracies. These computations punish greater 

mistakes disproportionately more than smaller ones, i.e., a model's worth increases proportionally to its 

degree of error. This attribute is necessary if we want our model's mistakes to be fewer. 

The MSE in regression, for instance, might indicate the average squared residual. The MSE decreases 

as the data points align with the regression line, indicating less error in the model. A model with fewer 

errors yields more accurate predictions. 

If the MSE is high, the data points are spread out quite a bit from the centre moment, while a low value 

implies the opposite. When the data points cluster tightly around their mean, the MSE will be modest 

(mean). It shows that our data values are distributed normally, that there is no skewness, and, most 

importantly, that there are fewer errors, where errors are defined as how far our data points are from the 

mean. 

 

4.4.2 Mean absolute error 
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In the context of machine learning, absolute error refers to the magnitude of difference between the 

prediction of an observation and the true value of that observation. Mean absolute error (MAE) takes 

the average of absolute errors for a group of predictions and observations to measure the magnitude of 

errors for the entire group. MAE can also be referred to as the loss function specified in equation (1). 

As one of the most commonly used loss functions for regression problems, MAE helps formulate 

learning problems into optimisation problems. It also serves as an easy-to-understand quantifiable 

measurement of errors for regression problems. 

 

𝑀𝐴𝐸 =
1

𝑛
 ∑ |𝑦𝑖 − 𝑦�̂�|

𝑛

𝑖=1

 

(5) 

 

4.4.3 Root mean square error 

The Root Mean Square Error (RMSE) represents the square root of the average squared differences 

between predicted and observed outcomes. It is a metric predominantly utilised in regression 

analysis and forecasting, where accuracy matters significantly. The lower the RMSE, the better the 

model's ability to predict accurately. Conversely, a higher RMSE signifies a greater discrepancy 

between the predicted and actual outcomes. RMSE initially computes the difference between each data 

point's observed and predicted value. This difference, known as the residual, is squared. The squared 

residuals are then summed up to obtain a cumulative figure divided by the number of data points to give 

the MSE. Finally, the square root of the MSE is calculated, resulting in the RMSE (see equation 6). 

 

𝑅𝑀𝑆𝐸 =  √
1

𝑛
∑(𝑦𝑖 − �̂�𝑖)2

𝑛

𝑖=1

 

            (6) 

Where 𝑦𝑗 is the true value of the dependent variable (vaccination rate), �̂�𝑗 is the predicted value of the 

dependent variable (vaccination rate), and 𝑛 is the number of observations. 

 

5 Results of the training of the models 
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In this section, we first discuss the results of the model constructionbuilding through iterations. Second, 

we discuss the evaluation of the fit of the models. Lastly, we discuss the application of the models to 

address our research questions. 

5.1 Results of models through iterations 

We consider Figs 3 and 4, which show the size of the RMSE over iterations for XGBoost and Random 

Forest, respectively (please note we do not have a similar Figure for the Decision Tree as it does not 

use an ensemble method). Figure 3 shows how the RMSE decreases over the number of iterations. It 

reaches a minimum at 16 iterations and remains constant up to 20 iterations. 

 

 

Fig 3. RMSE over iterations for XGBoost 

 

The Random Forest model (section 4.2) took much longer to train compared to the effectiveness of the 

training of the XGBoost model. After 50 trees, it seemed as though the model converged, but upon 

further inspection, the results continued to improve with minute increments with each additional 

iteration. In Fig 4, an illustration of the Random Forest algorithm training is given. The MSE decreases, 

and we can see that after 50 iterations, the MSE is relatively small. The MSE becomes smaller with 

each iteration, but it does not converge to a specific value. 
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Fig 4. RMSE over iterations for Random Forest 

 

5.2 Evaluation of the fit of the models 

 

In this section, we discuss the evaluation of the three models that we built, XGBoost, Random Forest 

and Decision Tree. In Table 3, the fit statistics for the three models are given. We discuss the fit measures 

when constructing the model to reach use the models to predict the output variable using the a 90% 

threshold since this provides us with the largest possible test dataset  (the fit measures ar also available 

for the 70 per cent level). If we were to use the 70% threshold, we would encounter a reduction in the 

sample size since it would drop all target outcomes above 70%. Our test data includes all variables 

(obviously , excluding the target output variable). We notice that all measures of fit reveal very small 

errors, indicating a good-fitting model. Across all three of the fit statistics, the XGBoost performs the 

best with the lowest values. For the XGBoost, the MSE is 0.0014, the MAE is 0.0227, and the RMSE 

is 0.0375.  

 

Table 3. Evaluation metrics across models 

Source: Author's own calculations 

 

Though the fit statistics indicate that the XGBoost model performed best when considering all models, 

a visual representation is also provided of all three models' predicted values in blue, with the true values 

Model MSE MAE RMSE 

XGBoost 0.001412552 0.022707714 0.0375839 

Random Forest 0.001861686 0.029981258 0.043147264 

Decision tree 0.01222601 0.07180425 0.11057130 
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of the dependent variable displayed in red. In Fig 5, the XGBoost results are displayed. The predicted 

values (the blue line) are quite close to the true values (in red), reflecting a good fit. 

 

 

Fig 5. XGBoost - predicted values of the output variable against the true values 

 

Considering Fig 6, we notice that using the Random Forest model, the predicted values (blue line) 

compared to the true values (red line) are not as good as in the case of the XGBoost model. This is also 

shown in the fit statistics (Table 3) with an MSE of 0.0018, an MAE of 0.0299 and an RMSE of 0.0431; 

thus, each fit statistic reveals bigger errors than in the case of the XGBoost model. 

   

 

Fig 6 Random Forest - predicted values of the output variable against the true values 

 

Looking at Fig 7, we notice that using the predicted values (blue lines) compared to the true values in 

the Decision Tree model, we could not reach similar levels of prediction as we did with either the 

XGBoost or the Random Forrest models. The fit statistics also reveal larger errors compared to the other 

models. The MSE is 0.0122, the MAE 0.0718 and the RMSE 0.1105 (Table 3). 
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Fig 7 Decision Tree - predicted output variable values against the true values. 

 

Fig 8 shows the predicted values of the outcome variable of all three models against the true value of 

the dependent variable. In Fig 8, the true value of the dependent variable is represented in red, while 

the predictions for the three models are represented in blue, XGBoost, green, Random Forest, and 

magenta, the Decision Tree. Fig 8 supports the results in Table 3 and Figs 5-7, as the XTBoost 

predictions ( blue line) is consistently closer to the true value (red line) compared to the values using 

the other two models than the other two. This aligns with our expectations that the XGBoost model 

outperforms the other models. As mentioned previously the XGBoost modelIt shows both better 

performs better ance and uses less computational power. Therefore, in discussing thethe application of 

the model to answer our research questions in sections 5.3 and 6, which determines the ranking of the 

importance of the variables, we interpret the XGBoost results8. 

 

 Fig 8. True value with all model predictions 

 

 
8 The reader should note that although the XGBoost outperforms the other models and is computationally less expensive, the 

Random Forest and Decision Tree Models have the benefit that they are easier to understand and visualise.  
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5.65.3 Results of the XGBoost model on variable importance 

Table 4 shows the results from our XGBoost model on ranking the importance of variables to reach a 

70% and 90% vaccination threshold rate (see Appendix C for the Random Forest and Decision Tree). 

We also consider a third model at the 80% vaccination threshold level for comparative analysis. 

Considering the results from reaching the 70, 80 and 90% thresholds, we notice recurring factors among 

the five most important factors. The factors are related to the vaccination policies, the COVID-19 

policies to limit the spread of the virus, and country characteristics such as the percentage of the 

population residing in rural areas and the average temperature in the countries. This implies that 

regardless of the vaccination threshold goal, governments should focus on their vaccination policy, 

international travel controls, the percentage of the population in rural areas and the average temperature 

to achieve their maximum vaccination rates.  

 

Table 4. Results on the order of the importance of the variables predicting vaccination thresholds 

of 70, 80 and 90%, respectively. 

70% threshold 80% threshold 90% threshold 

Vaccination policy Vaccination policy Vaccination policy 

Population aged between 10-19 International travel controls International travel controls 

International travel controls 
Percentage of population in 

rural areas 

Percentage of population in 

rural areas 

Percentage of population in 

rural areas 
Restrictions on gatherings Happiness 

Average temperature Average temperature Average temperature 

Workplace closing Human Development Index Population density 

Restrictions on gatherings Happiness Human Development Index 

Life expectancy Workplace closing Facial coverings 

Happiness Population aged between 10-19 Workplace closing 

Pollution mortality rate 
Out-of-pocket health 

expenditure 
Restrictions on gatherings 

Source: Authors' own calculations. 
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What is interesting to note is the important role subjective measures of well-being play in achieving 

vaccination goals. To gain a 70% vaccination (all countries met this threshold except S.A.), happiness 

was among the top ten important factors at number nine (Fig 9). If we increase our vaccination threshold 

to 80% (5 out of 10 countries met), happiness increases in importance and moves to the seventh place. 

However, to reach the vaccination threshold of 90% or more, we notice that people's happiness is again 

becoming increasingly important and reaches fourth place (Fig 10). Therefore, regardless of the 

threshold levelmodel, happiness plays an important role, and the higher the vaccination threshold 

governments want to achieve, the more important it becomes. 

 

Fig 9. Ranked variable importance - 70% vaccination threshold. 
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If we only consider the lowest threshold of 70% vaccination (Fig 9), most factors are objective and 

similar to the ones mentioned before. Although the share of the younger population also seems to be 

relatively important. From our sample, we note that all except one country managed to reach the 70% 

threshold, and therefore more attention should be paid to those factors from the 80% and 90% threshold 

models.  
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Fig 10. Ranked variable importance - 90% vaccination threshold. 

If we move to the 80% threshold model, we again find similar factors important – though restrictions 

on gatherings become important. Therefore, if governments want to reach the 80% threshold, they 

should consider the role COVID-19-related policy measures such as restrictions on gatherings play. We 

note that the association between restrictions on gatherings and vaccination rates can be positive or 

negative, and a trade-off is implied. If we allow a policy that does not restrict gatherings, higher 

vaccination rates become more important. However, implementing restrictions on gatherings decreases 

the possibility of spreading the disease. This implies that more stringent measures can limit the spread 

instead of vaccinations. However, this is not ideal, given the abundant evidence of the negative effect 

on well-being resulting from stringent measures such as lockdowns (Smith et al., 2021; Abadi et al., 

2021).  

 

6 Discussion on the application 

We will focus our discussion on the top 5 factors and use information from previous studies (see sections 

2.2 and 2.3) to allude to the relationship with vaccination thresholds. Since we know from Plans-Rubió 

(2022) that more than 90% of a country's population would need to be vaccinated, given the 

infectiousness of the pathogen, to achieve herd immunity, our discussion will focus on achieving this 

"golden standard". Subsequent discussions will highlight where factors have significantly changed in 

ranking and discuss how happiness and collective emotions can increase vaccination rates. As far as we 

know, this is the first study that shows the importance of subjective well-being measures.   

As noted in section 5.3, regardless of the vaccination threshold goal, governments should focus on their 

vaccination policy, international travel controls, the percentage of the population in rural areas and the 

average temperature to achieve their maximum vaccination rates (see Figs 9 and 10).  

The vaccination policy implemented (groups that can access the COVID-19 vaccine) was shown by 

Greyling and Rossouw (2022) that when more groups of people can access the vaccine, for example, 

all age groups compared to fewer groups, it is positively related to attitude towards the vaccine. This 

means more people will vaccinate when more people have access to the COVID-19 vaccine.  

Regarding international travel controls, we know that, for example, in New Zealand (one of the 

countries with the most stringent lockdowns and highest number of lockdowns), people were told to get 

vaccinated if they wanted their freedoms back. The then Prime Minister, Jacinda Ardern, clearly stated, 

"If you want summer […] get vaccinated." If you don't, "there will be everyday things you will miss 

out on". It wasn't until September 2022 that New Zealand fully opened up their international borders, 

allowing visitors back in. Rossouw et al. (2021) found that international border controls acted as a dual 

shock, economic and social. Hospitality operators were impacted directly by the lack of international 

and domestic tourism and experienced a significant economic shock that negatively influenced their 
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livelihoods. Furthermore, being unable to travel the world is a social shock causing a decrease in 

happiness.  

When it comes to the population percentage in rural areas, Barbieri et al. (2022) and Polašek et al. 

(2022) show that vaccine hesitancy is significantly higher in the rural than in the urban population. 

Additionally, De Boeck et al. (2020) and Oli et al. (2017) found that the complexity of the pipeline for 

vaccines from the regional depot to the facility level may create breaking points due to inadequate 

infrastructure and skills gap and that travelling to rural health facilities is more difficult than to urban 

health facilities. Rural populations,  and vulnerable and excluded people are among those for whom 

improved vaccination rates and access to care wereare urgently needed to prevent and treat COVID-19. 

Therefore, governments need to ensure that the rural populations receive targeted information related 

to the safety of the vaccines and that the rural population's access to  the vaccines is not hampered by 

procurement and capacity issues. 

This study is the first to show the importance of subjective well-being in achieving vaccination 

thresholds. Concerning the vaccination threshold of 90%, happiness ranks fourth (seventh in the 80% 

threshold model and ninth in the 70% model) and is therefore important for governments to address. 

Measuring happiness, thus a subjective measure that captures people's evaluative mood, is very 

important in any decision-making process. In an ideal world, people make rational choices. The rational 

choice theory states that when humans are presented with various options under the conditions 

of scarcity, they will choose the option that maximises their individual satisfaction. Alas, humans are 

not rational, and their emotions drive them, and therefore they make irrational decisions. Therefore, 

emotions and happiness levels also drive decision-making processes in considering whether to get 

vaccinated. AdditionallyOn the other hand, previous studies such as Kim et al. (2015) show that happier 

people make better health-related decisions since happier people are less inclined to engage in high-risk 

activities and take preventative action to mitigate risk. Also, happy people are not just self-centred or 

selfish; the literature suggests that happy individuals tend to be relatively more cooperative, prosocial, 

charitable, and "other-centred" (Kasser & Ryan, 1996; Williams & Shiaw, 1999).  

Furthermore, Sarracino et al. (2023) showed that happiness and trust are positively correlated, meaning 

that as trust increases, so does happiness. Trust in others also promotes cooperation and solidarity with 

positive spillovers on compliance and well-being (Bargain & Aminjonov, 2020). The takeaway from 

trust and happiness is quite straightforward; the lower your vaccination rates, the more important 

people's levels of happiness and trust become. Happiness and trust are connected to compliance and 

doing something "for the greater good". Therefore, the more you want people to engage in a specific 

activity, such as getting vaccinated, the more important emotions and happiness levels become.  

Average temperature ranks fifth important in all three of our threshold models. Jansson and Yamamoto 

(2022) studied five states in the U.S. to determine the relationship between average temperature, the 
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level of humidity and COVID-19 infection rates. The authors found that a higher-than-average 

temperature was consistently associated with a decreased relative risk of infection. Given that 

Fieselmann et al. (2022) found that one of the main reasons people do not get vaccinated is a perceived 

lower risk of infection, we can deduce that higher-than-average temperatures could lead to countries 

not meeting their maximum number of vaccine dosage uptake as a proportion of the population size of 

a country. Apart from the above, we know from studies conducted by Streefland et al. (1999a and b) 

that in developing countries, parents who do not adhere to vaccination schedules often do so because 

they are unable to go due to climatic conditions such as the weather being too hot, or roads being flooded 

from significant rainfall, or a crop needs to be to harvest before it withers in the heat. However, we note 

that the vaccine rollout was hampered in several European countries as well as the U.S. as severe 

snowstorms and unusual cold fronts caused inoculation centres, including mega facilities capable of 

vaccinating up to 20,000 people a day, to close (The Guardian, 2021; CBC News, 2021; John Hopkins 

Healthcare, 2021).  

Factors rated among the top 5 in our 80% and 70% threshold models that did not appear in the 90% 

threshold model are restrictions on gatherings and the population aged between 10-19. 

Although not top 5 in the 90% threshold model, restrictions on gatherings play an important role in the 

80% threshold model. When Americans began receiving the COVID-19 vaccine at the end of December 

2020, people started fantasising about the first thing they would do when the pandemic ended: go back 

to work, visit family, and hug friends (Marcus, 2021). From Greyling and Rossouw (2022), we also 

know that compliance with restrictions is negatively related to attitudes against the COVID-19 vaccine. 

When people are reluctant to comply with orders such as staying at home, then those individuals would 

be more willing to receive the COVID-19 vaccine. A study by Wright et al. (2022) investigated the 

relationship between vaccinated individuals' willingness to comply and the implemented behavioural 

regulations. The entire premise of the study is that vaccinated individuals believe they are less at risk 

because of their vaccination status. People think that when vaccinated, they do not need to comply with, 

for example, mask-wearing, social distancing etc., therefore creating a more positive attitude towards 

vaccines. This finding is informative to policymakers as a message of "less strict regulations" after 

vaccination can increase vaccine uptake.  

As the percentage of the population between 10-19 decreases, the population rate increases since they 

were last to be vaccinated. Therefore, if only a small proportion were this age, more people would be 

allowed, according to vaccine policy, to get vaccinated, and the vaccination rate would increase. For 

example, for all developed countries in the sample groups between 10 and 19 were 12 per cent or less 

of the population – whereas in South Africa it was almost 18%... this is an indication of many things – 

also Western countries' populations are getting older – thus they were in a higher need to vaccinate the 

older bigger groups of people.   
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7 Conclusion 

In this study, we used supervised machine learning to retrospectively evaluate the COVID-19 pandemic 

and determine the factors most important in increasing vaccine uptake. Therefore, we determined those 

factors associated with achieving herd immunity at the 70% vaccination threshold, estimated at the 

beginning of the COVID-19 pandemic and the 90% vaccination threshold, estimated later in the 

pandemic. By doing the aforementioned, we also determined those factors that differed between the 

70% to 90% vaccination threshold, which were responsible for reaching the higher vaccination level. 

Throughout our analyses, we paid special attention to the role of subjective well-being measures in 

achieving vaccine thresholds since we know that negative emotions, such as fear of the side effects of 

vaccines, influence peoples' attitudes towards receiving the vaccine and that happier people make better 

health-related decisions. 

We trained our models on the merged data setmerged dataset consisting of 6530 observations using an 

Extreme Gradient Boosting (XGBoost) algorithm and also used Random Forest and Decision Tree 

algorithms as robustness tests. After testing for precision, we found that the XGBoost model gave the 

best-fit measures and delivered the best results compared to the other two methods. Consequently, we 

discussed the results of the XGBoost model applied to our test data in determining the most important 

predicted factors that contributes to reaching different levels of herd immunity.  contributing to higher 

vaccination rates.  

The above allowed us to make several contributions to existing literature. First, ours was the first study 

to conduct a post-COVID-19 cross-country analysis of the most important variables to reach different 

levels of herd immunityincrease vaccine uptake. Second, we were also the first study to include 

subjective measures of well-being in our estimations. Third, we were the first study ot differentiate 

between the most important factors to reach different levels of herd immunity.  Fourth we were the first 

to accomplish the [pre--mentioned usinge various machine learning algorithms to train our modelsdata 

and determine which algorithm gives us the best fit, i.e., the most reliable predictions. Subsequently, 

our XGBoost model can be used as a benchmark for future research related to the most important factors 

for reaching herd immunity levelsincreasing vaccination uptake. Furthermore, this study offered some 

actionable insights for policymakers on increasing vaccination rates to curb pandemics' health, 

economic and political effects.  

Interestingly our preferred XGBoost model revealed similar important factors in predicting the 70% 

and 90% vaccination thresholds to reach different levels of herd immunity. These included the 

vaccination policy implemented, international travel controls, the percentage of the population in rural 

areas and the average temperature. Of significance was happiness's role in attaining the 90% vaccine 

threshold. Whereas happiness had a lower importance level in achieving the 70% threshold, the 
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importance of happiness in achieving the 90% vaccine threshold was clear. If governments want higher 

levels of compliance and vaccine uptake, subjective well-being measures such as mood and emotions 

must be prioritised. Addressing how people feel, in general, towards vaccines and governments is vitally 

important when policymakers want to push beyond the lower 70% vaccine threshold and achieve the 

"golden standard" of 90% fully vaccinated.  

It would be negligent of us not to discuss our study's limitations. First, the sample of countries under 

investigation are mostly developed countries. It will be interesting to extend the sample to determine 

those policies, characteristics and subjective well-being measures deemed necessary to increase 

vaccination rates in developing countries and contrast those to the factors applicable to developed 

nations.  

Second, although we know that lack of international support and cooperation played a significant role 

in procuring and disseminating vaccines in developing countries, we could not add variables reflecting 

international support or emergency investment in health care to our models due to high missingness. 

We acknowledge that these variables could have ranked among the most important variables and 

potentially have been included in the top five. The missingness of the observations of these variables is 

further proof of the failures of countries to prepare for pandemics and give international support. The 

missingness on international support was 67%, implying that international support was given 

infrequently. In the event where we added the amounts from the developed countries in our sample, it 

was still minimal. Furthermore, countries did not frequently invest in emergency health care. Of the 

observations in our dataset on this variable, 74% were missing. Note that these numbers are for 

developed countries; therefore, it is easy to imagine what the variable would reveal for developing 

countries. When we added these amounts, it was very little compared to the amounts spent on, for 

example, vaccines.   
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Appendix A 

To derive our time-series data which captures sentiment and emotions, we construct variables using Big 

Data by extracting tweets from Twitter. In our analysis, we extracted two sets of tweets based on 

keywords, one related to COVID-19 vaccines and the other related to the government. The tweets 

containing these words amounted to 1,047,000 tweets. We extracted all tweets according to specific 

geographical areas (country).  

For COVID-19 vaccines, we extract tweets using the keywords: vaccinate, vacc, vaccine, Sputnik V, 

Sputnik, Sinopharm, Astrazeneca, Pfizer (if NEAR) vaccine, Pfizer-BioNTech, Johnson & Johnson, and 

Moderna.  

For the government, we extract tweets using the keywords: government, parliament, ministry, minister, 

senator, M.P.s, legislator, political, politics, prime minister. 
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The first step in our analysis is determining the tweets' language (we detected 64 different languages), 

and all non-English tweets were translated into English. After the translation process, we use NLP to 

extract the tweets' sentiment and underlying emotions. To test the robustness of coding the sentiment of 

the translated tweets, we use lexicons in the original language, if available, and repeat the process. We 

compare the coded sentiment of the translated and original text and find the results strongly correlated.   

We make use of a suite of lexicons. Each differs slightly but primarily aims to determine the sentiment 

of unstructured text data. The two lexicons mostly used in our analysis are Sentiment140 and NRC 

(National Research Council of Canada Emotion Lexicon developed by Turney and Mohammad (2010)). 

The other lexicons are used for robustness purposes and are part of the Syuzhet package. The lexicons 

include Syuzhet, AFINN and Bing. The sentiment is determined by identifying the tweeter's attitude 

towards an event using variables such as context, tone, etc. It helps one form an entire opinion of the 

text. Depending on the lexicon used, the text (tweet) is coded. For example, if a tweet is positive, it is 

coded as 0; if neutral, 2 and if negative, 4.  

We use the NRC lexicon to code the sentiment (as explained above) and analyse the underlying tweets' 

emotions. It distinguishes between eight basic emotions: anger, fear, anticipation, trust, surprise, 

sadness, joy and disgust (the so-called Plutchik (1980) wheel of emotions). NRC codes words with 

different values, ranging from 0 (low) to 8 (the highest score in our data), to express the intensity of an 

emotion or sentiment.    

To construct the time-series data, we use the coding of the tweets and derive daily averages. In this 

manner, we derive a positive sentiment, a negative sentiment and eight emotion time series. We derive 

the sentiment time series using different lexicons as a robustness test and compare these results using 

correlation analyses. We perform additional robustness tests, for example, determining whether the 

sampling frequency significantly influences the results.  

To test the robustness of the frequency, we construct the relevant index (time series) per day (the norm); 

we repeat the exercise but construct the time series per hour. We find similar trends in our hourly and 

daily time series, indicating that the timescale at which sampling occurs does not significantly influence 

the observed trend.  

To test whether the volume of tweets affects the derived time-series data, we extract random samples of 

differing sizes from the daily text corpus of tweets. The time series based on these smaller samples (50 

per cent and 80 per cent of the daily extracted tweets) are highly correlated to the original time series. 
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Appendix B 

Full list of variables 

Variable Description Scale Coding Source 

Vaccination 

policy 

Policies for 

vaccine delivery 

for different 

groups 

Ordinal 

scale 

0 - No availability 

1 - Availability for ONE of following: 

key workers/ clinically vulnerable groups 

(non-elderly) / elderly groups 

2 - Availability for TWO of following: 

key workers/ clinically vulnerable groups 

(non-elderly) / elderly groups 

3 - Availability for ALL of following: 

key workers/ clinically vulnerable groups 

(non-elderly) / elderly groups 

4 - Availability for all three plus partial 

additional availability (select broad 

groups/ages) 

5 - Universal availability 

Hale et al. (2021) 

 

Population rural 

(Percentage of 

population in 

rural areas) 

People living in 

rural areas as 

defined by 

national statistical 

offices. It is 

calculated as the 

difference 

between the total 

and urban 

populations.  

Percentage  World Bank staff 

estimates based on 

the United Nations 

Population 

Division's World 

Urbanization 

Prospects: 2018 

Revision. 

Average 

temperature 

Average 

temperature in the 

country 

Celsius  World Bank 

(2023a) 

Population 

density 

People per square 

kilometre of land 

area 

  United Nations, 

Department of 

Economic and 

Social Affairs, 

Population 

Division (2022) 

Workplace 

closing 

Record closing of 

workplaces 

Ordinal 0 - no measures 

1 - recommend closing (or recommend 

work from home) or all businesses open 

with alterations resulting in significant 

differences compared to non-Covid-19 

operations 

2 - require closing (or work from home) 

for some sectors or categories of workers 

3 - require closing (or work from home) 

for all-but-essential workplaces (e.g. 

grocery stores, doctors) 

Blank - no data 

Hale et al. (2021) 

Restrictions on 

gatherings 

Record limits on 

gatherings 

Ordinal 0 - no restrictions 

1 - restrictions on very large gatherings 

(the limit is above 1000 people) 

2 - restrictions on gatherings between 

101-1000 people 

3 - restrictions on gatherings between 11-

100 people 

4 - restrictions on gatherings of 10 people 

or less 

Blank - no data 

Hale et al. (2021) 

International 

travel controls 

Restrictions on 

international 

travel 

Ordinal 0 - no restrictions 

1 - screening arrivals 

2 - quarantine arrivals from some or all 

regions 

3 - ban arrivals from some regions 

Hale et al. (2021) 
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4 - ban on all regions or total border 

closure 

Blank - no data 

Life expectancy The average 

number of years a 

newborn would 

live if age-specific 

mortality rates in 

the current year 

were to stay the 

same throughout 

its life. 

Years  United Nations, 

Department of 

Economic and 

Social Affairs, 

Population 

Division (2022) 

Population age 

10-19 

 Continuous  World Bank 

Face coverings Policies on the 

use of facial 

coverings outside 

the home 

Ordinal 0 - No policy 

1 - Recommended 

2 - Required in some specified 

shared/public spaces outside the home 

with other people present or some 

situations when social distancing not 

possible 

3 - Required in all shared/public spaces 

outside the home with other people 

present or all situations when social 

distancing not possible 

4 - Required outside the home at all times 

regardless of location or presence of other 

people 

Hale et al. (2021) 

Income support Record if the 

government 

provides direct 

cash payments to 

people who lose 

their jobs or 

cannot work. 

 

Note: only 

includes payments 

to firms if 

explicitly linked 

to payroll/salaries 

Ordinal 0 - no income support 

1 - government is replacing less than 50% 

of lost salary (or if a flat sum, it is less 

than 50% of median salary) 

2 - government is replacing 50% or more 

of lost salary (or if a flat sum, it is greater 

than 50% of median salary) 

Blank - no data 

Hale et al. (2021) 

Pollution 

mortality rate 

   United Nations, 

Department of 

Economic and 

Social Affairs, 

Population 

Division (2022) 

Debt relief Record if the 

government is 

freezing financial 

obligations for 

households (e.g. 

stopping loan 

repayments, 

preventing 

services like water 

from stopping, or 

banning evictions) 

Ordinal 0 - no debt/contract relief 

1 - narrow relief, specific to one kind of 

contract 

2 - broad debt/contract relief 

Hale et al. (2021) 

Surprise_Vac The emotion 

surprise towards 

vaccines 

  Greyling et al. 

(2019) 

Human capital 

index 

   World Bank staff 

calculations based 

on the 

methodology 
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described in World 

Bank (2018) 

Human 

development 

index 

   UNDP 

GDP per capita 

(US$) 

   World Bank 

Sadness_GNH The emotion 

general sadness 

  Greyling et al. 

(2019) 

Trust_GNH The emotion 

general trust 

  Greyling et al. 

(2019) 

Anticipation_G

ov 

The emotion 

anticipation 

towards 

government 

  Greyling et al. 

(2019) 

Disgust_Gov The emotion 

disgust towards 

government 

  Greyling et al. 

(2019) 

Fear_Gov The emotion fear 

towards 

government 

  Greyling et al. 

(2019) 

Vac-

VADER_sent 

Sentiment 

towards the 

vaccine 

  Greyling et al. 

(2019) 

Diabetes_preval

ence 

    

Joy_Gov The emotion joy 

towards 

government 

  Greyling et al. 

(2019) 

Sadness_Gov The emotion 

sadness towards 

government 

  Greyling et al. 

(2019) 

Population 

age_0-9 

    

Anticipation_G

NH 

The emotion 

general 

anticipation 

  Greyling et al. 

(2019) 

Fear_GNH The emotion 

general fear 

  Greyling et al. 

(2019) 

Vac_GNH Happiness 

towards the 

vaccine 

  Greyling et al. 

(2019) 

Joy_GNH The emotion 

general joy 

  Greyling et al. 

(2019) 

Anger_GNH The emotion 

general anger 

  Greyling et al. 

(2019) 

Disgust_GNH The emotion 

general disgust 

  Greyling et al. 

(2019) 

Contact tracing Record 

government 

policy on contact 

tracing after a 

positive diagnosis 

Ordinal 

scale 

0 - no contact tracing 

1 - limited contact tracing; not done for 

all cases 

2 - comprehensive contact tracing; done 

for all identified cases 

Hale et al. (2021) 

Surprise_Gov The emotion 

surprise towards 

government 

  Greyling et al. 

(2019) 

GNH_Gov Happiness 

towards 

government 

  Greyling et al. 

(2019) 

Trust_Gov The emotion trust 

towards 

government 

  Greyling et al. 

(2019) 

Surprise_GNH The emotion 

general surprise 

  Greyling et al. 

(2019) 
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Anger_Gov The emotion 

anger towards 

government 

  Greyling et al. 

(2019) 

Vac_anticipatio

n 

The emotion 

anticipation 

towards the 

vaccine 

  Greyling et al. 

(2019) 

Vac_disgust The emotion 

disgust towards 

the vaccine 

  Greyling et al. 

(2019) 

Vac_sadness The emotion 

sadness towards 

the vaccine 

  Greyling et al. 

(2019) 

Vac_fear The emotion fear 

towards the 

vaccine 

  Greyling et al. 

(2019) 

Vac_anger The emotion 

anger towards the 

vaccine 

  Greyling et al. 

(2019) 

Vac_trust The emotion trust 

towards the 

vaccine 

  Greyling et al. 

(2019) 

Vac_joy The emotion joy 

towards the 

vaccine 

  Greyling et al. 

(2019) 

Testing policy Record 

government 

policy on who has 

access to testing 

 

Note: this records 

policies about 

testing for current 

infection (PCR 

tests), not testing 

for immunity 

(antibody test) 

Ordinal 

scale 

0 - no testing policy 

1 - only those who both (a) have 

symptoms AND (b) meet specific criteria 

(e.g. key workers, admitted to hospital, 

came into contact with a known case, 

returned from overseas) 

2 - testing of anyone showing Covid-19 

symptoms 

3 - open public testing (e.g. "drive 

through" testing available to 

asymptomatic people) 

Blank - no data 

Hale et al. (2021) 

Infant mortality 

rate 

    

Out-of-pocket 

health 

expenditure 

   Hale et al. (2021) 

Comorbidity 

mortality rate 

   Hale et al. (2021) 

Smoking 

prevalence 

   Hale et al. (2021) 

Physicians per 

1000 

   Hale et al. (2021) 

Population 

age_40-49 

    

Nurses per 1000    Hale et al. (2021) 

Population 

age_60-69 

    

Population 

age_80_and_old

er 

    

GDP (USD)     

Public 

information 

campaigns 

    

Health 

expenditure 

(USD) 

 

    

Population age 

20-29 
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Population age 

70-79 

    

Vader_pos_gov 

Positive sentiment 

towards the 

government 

  Greyling et al. 

(2019) 

Population age 

50-59 

 

    

Vader_neg_gov 

 

Negative 

sentiment towards 

the government 

  Greyling et al. 

(2019) 

Population age  

30-39 

 

    

Vac_vader_neg 

 

Negative 

sentiment towards 

the vaccine 

  Greyling et al. 

(2019) 

Vac_vader_pos 

 

Positive sentiment 

towards the 

vaccine 

  Greyling et al. 

(2019) 

Vac_vader_sent 

 

Sentiment 

towards the 

vaccine 

  Greyling et al. 

(2019) 
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Appendix C 

Ranking according to the importance of variables. XGBoost, Random Forest and Decision Tree – 

90 % threshold 

XGBoost – 90% threshold Random Forest – 90% threshold Decision Tree – 90% threshold 

Vaccination policy Vaccination policy Vaccination policy 

International travel controls Restrictions on gatherings Testing policy 

Percentage of population in rural 

areas 
International travel controls Public information campaigns 

Happiness Debt relief Contact tracing 

Average temperature Facial coverings Facial coverings 

Population density Testing policy International travel controls 

Human Development Index Income support Income support 

Facial coverings Contact tracing Restrictions on gatherings 

Workplace closing Comorbidity mortality rate Population aged between 20-29 

Restrictions on gatherings Average temperature Population aged between 0-9 

Income support Infant mortality rate Population aged between 10-19 

Life expectancy Workplace closing Human Development Index 

Pollution mortality rate Population aged 80 and older 
Percentage of population in rural 

areas 

Out-of-pocket health expenditure GDP (USD) Infant mortality rate 

Debt relief Public information campaigns Out-of-pocket health expenditure 

Trust (GNH) Diabetes prevalence Population aged between 30-39 

Human capital index Out-of-pocket health expenditure Population aged between 40-49 

Diabetes prevalence Population density Health expenditure (USD) 

Human Development Index Smoking prevalence GDP per capita (USD) 

DDP per capita (USD) Life expectancy Human capital index 

Sadness (GNH) – lack of happiness Disgust (GNH) – lack of happiness Population density 

Sentiment towards vaccines  Human capital index Smoking prevalence 

Smoking prevalence Anger (GNH) – lack of happiness Anger (GNH) – lack of happiness 

 


