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Spatial Cournot Competition in Two Intersecting Circular

Markets

Abstract

This paper analyzes the location equilibrium in two intersecting circular markets where

two identical firms engage in Cournot competition. It is shown that each of the two

intersection points occupied by one of the firms is a location equilibrium. The intuition of

our result is that by locating on the intersection points, firms can minimize their transport

costs and avoid competition. Our finding coincides with the real world phenomenon that

transport hubs may attract more firms and people.
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1 Introduction

Spatial Cournot competition on a linear market was first developed by Anderson and Neven

(1991) and Hamilton et al. (1989), and their common conclusion is that firms will agglomerate

at the market center in equilibrium. Their models are revised by Pal (1998), who analyzed a

spatial Cournot competition on a circular market and found that firms locate at the two ends

of a diameter in equilibrium. The circular Cournot model has been revised by Matsushima

(2001), who showed that firms are equally separated and agglomerated at Pal’s equilibrium

points. Shimizu (2002) and Yu and Lai (2003) showed that firms agglomerate at one point in

a circular market when their products are complements. Gupta et al. (2004) proved that both

location patterns in Pal (1998) and Matsushima (2001) are special cases in a circular market,

and there exist some other location patterns. All the above studies discuss only one circular

market, where the shortest path for any origin-destination is easily calculated.

Recently, Guo and Lai (2015) show that firms will gradually move starting from Pal’s points

along the linear street to the market center in a linear-circular market as the demand density

along the linear street increases. Since their model combines with a linear part and a circular
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part, calculations for the shortest path for any shipping are more complicated than those for

Pal’s market. The current paper will discuss the location equilibrium for duopolistic Cournot

firms competing on two intersecting circular markets. It is often observed that there may be

many intersection points in real road networks, but to the best of our knowledge, there is no

economic analysis on intersecting circular markets with duopoly firms engaging in Cournot

competition. The calculations of the shortest path for some origin-destination pairs in the

current model are more complicated than those in all the above-mentioned models. There-

fore, only symmetric equilibria will be focused on in this paper to simplify our calculations.

Intuitively, the two intersection points may very possibly be the equilibrium locations, and

indeed they are, because locating on these locations can minimize transport costs and avoid

competition market segments. In the real world, many cities were developed based on their

positions as transportation hubs.

The rest of this paper is as follows. Section 2 is the model, where the detailed calculations

are described. Section 3 provides some conclusions.

2 The Model

Suppose there are two identical unit-length circular markets intersecting at two points (see

Figure 1). In order to save notations, the left circular market (market X) is clockwisely

counted from zero to 1, while the right circular market (Y ) is anticlockwisely counted from

zero to 1. Therefore, no matter whether from the view point of X or Y , these two markets

intersect at point s and 1− s, where s ∈ [0, 1/2]. Each point of these two circular markets has

an inverse demand function: p = 1− b(q1 + q2), where p is the equilibrium price, q1 and q2 are

the quantities sold by firm 1 and firm 2, respectively, a > 0, b > 0 are parameters, and a is the

reservation price which is assumed to be large enough (a > 2t) so that all market areas are

served by both firms. Both firms are engaged in Cournot competition on each market point,

and any consumer arbitrage is forbidden. The game structure is as follows. In the first stage,

firm 1 chooses its location x1 ∈ [0, 1] on X and firm 2 chooses its location y2 ∈ [0, 1] on Y

simultaneously. In the second stage, both firms decide their quantities shipped to each point

of these two markets. The profits coming from a location x on X circle for these two firms
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are:

πX1 (x) =
(
a− b(qX1 (x) + qX2 (x))− t|x− x1|

)
· qX1 (x), (1)

πX2 (x) =
(
a− b(qX1 (x) + qX2 (x))− t (|x− s|+ |y2 − s|)

)
· qX2 (x), (2)

where t is the per unit transport rate, and a superscript “X” represents the left market.

Solving ∂πX1 /∂q
X
1 = 0 and ∂πX2 /∂q

X
2 = 0 simultaneously yields

qX1 (x) =
a− 2t|x− 1 + s|+ t|y2 − s|+ t|x− s|

3b
, (3)

qX2 (x) =
a− 2t|x− s| − 2t|y2 − s|+ t|x− 1 + s|

3b
. (4)

The equilibrium price in market X is then

pX =
a

3
+

1

3
(t|x− s|+ t|x− 1 + s|+ t|y2 − s|) . (5)

For the market Y , the profits for firm 1 and firm 2 at a point y ∈ [0, 1] are as follows

πY1 (y) =
(
a− b(qY1 (y) + qY2 (y))− t(|1− s− x1|+ |y − (1− s)|)

)
· qY1 (y), (6)

πY2 (y) =
(
a− b(qY1 (y) + qY2 (y))− t|y − y2|

)
· qY2 (y). (7)

Solving ∂πY1 (y)/∂qY1 = 0 and ∂πY2 (y)/∂qY2 = 0 simultaneously yields

qY1 (y) =
a− 2t|y − 1− s|+ t|y − y2| − 2t|x1 − 1 + s|

3b
, (8)

qY2 (y) =
a− 2t|y − y2|+ t|y − 1 + s|+ t|x− 1 + s|

3b
. (9)

The equilibrium price at a point y ∈ [0, 1] is then

pY (y) =
a

3
+
t

3
|y − y2|+

1

3
|y − 1 + s|. (10)

With (3), (4), and (5), the profits for both firms at x are thus

πX1 (x) =
(a− 2t|x− x1|+ t|y2 − s|+ t|x− s|)2

9b
, (11)

πX2 (x) =
(a− 2t|x− s|+ t|x− x1| − 2t|y2 − s|)2

9b
. (12)
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With (8), (9), and (10), the profits for firm 1 and firm 2 in y are

πY1 (y) =
(a− 2t|x1 − 1 + s|+ t|y − y2| − 2t|y − 1 + s|)2

9b
, (13)

πY2 (y) =
(a− 2t|y − y2|+ t|y − 1 + s|+ t|x1 − 1 + s|)

9b
. (14)

Since these two markets are assumed to be symmetric, only a symmetric location equilibrium

will be explored.1 Without loss of generality, assume that firm 1 is located at one of the

intersection points, x1 = 1 − s, and y2 ∈ [0, 1/2] in Y . There are two cases, y2 ∈ [0, s] (see

Figure 2), and y2 ∈ [s, 1/2] (see Figure 3).

Case 1: y2 ∈ [0, s]

The X market can be divided into 5 subsections for further calculations: [0, s] [s, 12 − s],

[12 − s, s + 1
2 ], [s + 1

2 , 1 − s], and [1 − s, 1]. Similarly, the Y market can be divided into 5

subsections: [0, y2], [y2,
1
2 − s], [12 − s, y2 + 1

2 ], [y2 + 1
2 , 1 − s], and [1 − s, 1]. The next step

is carefully calculating the profits in each segment. For example, for calculating the profit of

firm 1 for x ∈ [0, s], the distance between y2 and s (i.e. |y2 − s|) will be replaced with s− y2,

and |x− s| is replaced with s− x, and |x− 1 + s| is changed to x+ s. Therefore,

πX1 (x) =
(a− 3tx− ty2)2

9b
, x ∈ [0, s]. (15)

1It is not difficult to prove that when both markets touch at just one point, the unique location equilibrium

is that both firms are located at this touching point.
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Therefore, the total profit for firm 2 is the sum of the profits in all 10 segments in X and Y

Π2 =

∫ s

0
πX2 (x)dx+

∫ 1
2
−s

s
πX2 (x)dx+

∫ s+ 1
2

1
2
−s

πX2 (x)dx+

∫ 1−s

s+ 1
2

πX2 (x)dx+

∫ 1

1−s
πX2 (x)dx

+

∫ y2

0
πY2 (y)dy +

∫ 1
2
−s

y2

πY2 (y)dy +

∫ y2+
1
2

1
2
−s

πY2 (y)dy +

∫ 1−s

y2+
1
2

πY2 (y)dy +

∫ 1

1−s
πY2 (y)dy

=

∫ s

0

(3tx− 3ts+ a+ 2ty2)
2

9b
dx+

∫ 1
2
−s

s

(a− tx+ ts+ 2ty2)
2

9b
dx

+

∫ s+ 1
2

1
2
−s

(a− 3tx− ts+ t+ 2ty2)
2

9b
dx+

∫ 1−s

s+ 1
2

(a− t+ tx− 5ts+ 2ty2)
2

9b
dx

+

∫ 1

1−s

(a+ 3tx− 3ts− 3t+ 2ty2)
2

9b
dx

+

∫ y2

0

(a− 2ty2 + 3ty + ts)2

9b
dy +

∫ 1
2
−s

y2

(a− ty + 2ty2 + ts)2

9b
dy

+

∫ y2+
1
2

1
2
−s

(a− 3ty + 2ty2 + t− ts)2

9b
dy +

∫ 1−s

y2+
1
2

(a− t+ ty − 2ty2 − ts)2

9b
dy

+

∫ 1

1−s

(a− 3t+ 3ty − 2ty2 + ts)2

9b
dy

=
−144t2s3 + t2 + 6t2s+ 84t2s2 − 6ta− 6t2y2 + 12a2 + 36t2y22 − 16t2y32 − 24tas

54b

+
−24t2y2s+ 24aty2 − 48t2y2s

2 − 48st2y22
54b

. (16)

Recall that y2 ∈ [0, s] in this case. Therefore, when y2 → s, the first-order condition for firm

2 is:

∂Π2

∂y2

∣∣∣∣
y2=s

=
t
(
−32ts2 + 8ts+ 4a− t

)
9b

> 0. (17)

In other words, firm 2 will choose y2 = s when y2 ≤ s. At y2 = s, it is easy to check that

Π1 = Π2.
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Case 2: y2 ∈ [s, 1
2
]

For y2 > s, the calculations (see Figure 3) are similar to that in the Case 1, and thus the

details are omitted here. Given x1 = 1− s, the profit for firm 2 is

Π2 =

∫ s

0
πX2 (x)dx+

∫ 1
2
−s

s
πX2 (x)dx+

∫ s+ 1
2

1
2
−s

πX2 (x)dx+

∫ 1−s

s+ 1
2

πX2 (x)dx

+

∫ 1

1−s
πX2 (x)dx+

∫ y2

0
πY2 (y)dy +

∫ 1
2
−s

y2

πY2 (y)dy +

∫ y2+
1
2

1
2
−s

πY2 (y)dy

+

∫ 1−s

y2+
1
2

πY2 (y)dy +

∫ 1

1−s
πY2 (y)dy

=

∫ s

0

(a+ 3tx+ ts− 2ty2)
2

9b
+

∫ 1
2
−s

s

(a− tx+ 5ts− 2ty2)
2

9b

+

∫ s+ 1
2

1
2
−s

(a− 3tx+ 3ts+ t− 2ty2)
2

9b
+

∫ 1−s

s+ 1
2

(a+ tx− ts− t− 2ty2)
2

9b

+

∫ 1

1−s

(a+ 3tx+ ts− 3t− 2ty2)
2

9b

+

∫ y2

0

(a− 2ty2 + 3ty + ts)2

9b
+

∫ 1
2
−s

y2

(a− ty + 2ty2 + ts)2

9b

+

∫ y2+
1
2

1
2
−s

(a− 3ty + 2ty2 + t− ts)2

9b
+

∫ 1−s

y2+
1
2

(a− t+ ty − 2ty2 − ts)2

9b

+

∫ 1

1−s

(a− 3t+ 3ty − 2ty2 + ts)2

9b

=
−144t2s3 + t2 − 6t2s+ 84t2s2 − 6ta+ 6t2y2 + 12a2 + 36t2y22 − 16t2y32 + 24tas

54b

+
−24t2y2s− 24aty2 − 48t2y2s

2 − 48st2y22
54b

. (18)

Recall that y2 > s in this case. Therefore, the first-order condition for firm 2 is:

∂Π2

∂y2

∣∣∣∣
y2=s

=
−t
(
32ts2 + 4a− 8ts− t

)
9b

< 0. (19)

Therefore, firm 2 will choose a location y2 = s when y ∈ [s, 1/2]. Due to symmetry, it is thus

proved that x1 = 1 − s and y2 = s constitute a location equilibrium. The intuition of this

result is clear. If x1 6= 1 − s, say x1 = 0, then there exist some ranges between [s, 1 − s] in

market Y that have double shipping. For example, from x1 = 0 to y = 0,2 firm 1 must ship

2Although (x1 = 0, y2 = 0) are symmetric locations, it is not an equilibrium location pair. Detailed proof is

available upon request.
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X Y

1− s

s

3
4

1
2

1
4

0

3
4

1
4

0 1
2

Figure 1: Two intersecting circular markets.

upward to 1− s and then ship downward to y = 0, while when x1 = 1− s, then there exists no

opposite direction shipping. Another way to explain this result is also intuitive. Firms save

transportation costs by choosing a location near the middle part of these two circles. Second,

firms try to be far away from their rivals. When each firm occupies one of the intersection

points, these two considerations are satisfied simultaneously.

Note that the shape of a circle needs not so perfect in our model, the only required condition

is that both circles have the same length. Let’s see a similar structure. In Figure 4, one may see

that there are two “main streets” connecting with a circular market, which can be compared

with Guo and Lai (2015), where there is only one main street. As shown in Guo and Lai

(2015), firms locate at the two ends of the main street if the density in there is not too high.

Our result here confirms their conclusion again. If s is small, then Figure 4 can be reprinted

as Figure 5, or even as Figure 6. If the intersecting part shrinks and other parts are extended

in opposite directions, then our model repeat the linear model of Anderson and Neven (1991),

where the firms agglomerate at the market center. There is a little difference in that the

current model has a slight space between s and 1 − s, which means that if there exist some

spaces for firms in Anderson and Neven (1991), they will try to avoid competition by locating
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1− s
x1 =

s

1
2 0

s+ 1
2

1
2 − s

0 1
2

y2 + 1
2

y2
1
2 − s

Figure 2: Case 1: when y2 < s.

1− s
x1 =

s

1
2 0

s+ 1
2

1
2 − s

0 1
2

s+ 1
2

1
2 − s

y2

y2 + 1
2

Figure 3: Case 2: when y2 > s.
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0

0

s 1− s

Figure 4: An adjusted structure of the two intersecting circles.

Figure 5: A figure reshaped from Figure 4.

s

1− s

Figure 6: Another reshaped figure from Figure 4.
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at the opposite points of the central circle.

3 Conclusion

This paper explores the location equilibrium for two identical competing firms in the two

intersecting circular markets, and shows that both firms will locate at the two intersection

points in equilibrium. The intuition of this result is that firms can avoid competition and

minimize transport costs by locating at these hub points. This result coincides with the real

world phenomenon that transport hubs may attract more firms and people, compared with

other non-hub points, thus forming cities.
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