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Abstract 

We suggest the use of outdegrees from graph theory to rank locations in terms of their 

contagiousness. We show that outdegrees are equal to the column sums of spatial 

autoregressive matrices, which may be estimated using econometric methods for 

spatial panel data. Outdegree is a superior concept to R for 'traffic light' shading 

because it distinguishes between the export and import of contagion between 

locations. Simulation methods are used to illustrate the concept of outdegrees and its 

structural determinants in terms of centrality, indigenous contagion and spatial 

contagion. A secondary criteria for traffic light shading involves the stochastic 

structure of morbidity shocks, which induce 'spiking' through their autoregressive 

persistence, conditional heteroscedasticity and diffusion jump parameters.    
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1. Introduction 

From the outset the Covid-19 epidemic has been characterized by its spatial or 

geographic heterogeneity. In some locations within countries the epidemic has been 

particularly intense, while in others it has been mild and even non-existent. In an 

attempt to control the pandemic, national governments have adopted 'traffic light' 

policies, which differentiate lockdown measures across locations according to the 

intensity of their Covid-19 morbidities and recovery performance. Spatial units such 

as neighborhoods, cities or regions are assigned a Covid-19 performance score that is 

color coded according to traffic light colors. Seemingly arbitrary cut-off points 

determine the move from color to color. As Covid-19 outcomes rise or wane, 

locations find themselves moving across the different categories with their attendant 

lockdown or travel restrictions. In essence, traffic light policy is a tool for 

operationalizing spatially differentiated mitigation policy. 

Traffic light policy in practice (reviewed in section 2) highlights the arbitrariness in 

determining color changes in traffic light policy formulation.  There is little common 

use of variables or criteria for assigning color codes and in the absence of any 

standardized measure for change, each country developed its own (often opaque) 

method.  Furthermore, many of the countries that adopted a traffic light system for the 

spatial mediation of Covid-19 ignore the challenges of calculating a spatially-sensitive 

R.  In this paper we argue that while it is relatively straightforward to calculate R 

nationally, matters are very different when R is location specific. This difference 

arises because locations import and export Covid-19 to each other through human 

contact and economic and social intercourse between them. The same phenomena are 

much weaker at the international level than at the intranational level because it is 

much easier to control cross-border movements between countries than within them, 

and the scale of cross-border traffic is much greater intra-nationally than 

internationally. 

We argue that operationalizing spatial mitigation policy by calculating R for locations 

using the same methods as for countries is likely to produce accident-prone traffic 

lights. Green locations might be mistaken for red, and red for green. Just because 

Covid-19 morbidity happens to be increasing in some location does not mean that its 

R is greater than 1. By the same token, just because Covid-19 morbidity happens to be 

decreasing does not mean that its R is less than 1.   



3 
 

To ensure that such errors do not arise, we propose a new methodology for ranking 

the contagiousness of different locations in terms of their outdegrees from graph 

theory (Diestel 2005). Outdegree measures the effect of a random increase in 

morbidity in a given location on morbidity in all other locations, and replaces the use 

of both R and arbitrary weighting systems. Locations with the largest outdegrees are 

color coded 'red' while locations with the smallest outdegrees are color-coded 'green'. 

Under this regime local imports and exports of Covid-19 are linked in a closed 

system.  If an area increases its imports of Covid-19 then by definition other areas 

must be exporting more. As traffic light policy works on the basis of ranks, locations 

can increase the volume of Covid-19 exporting activity and still maintain the same 

rank. Since outdegrees are equivalent to column sums of spatiotemporal impulse 

response matrices, they may be estimated by econometric methods designed for 

nonstationary spatial panel data (Beenstock and Felsenstein 2019). 

This paper proceeds as follows. Section 2 reviews the literature on spatial mitigation 

policy for Covid-19. In section 3 we present a stochastic SIR model in discreet time, 

which is amenable to estimation using econometric methods for spatial panel data. 

Section 4 illustrates how outdegrees are derived from SIR models, and how they 

distinguish between indigenous and imported contagion. In section 5 we compare 

contagion heat maps based on outdegrees with R-based contagion patterns derived for 

synthetic locations and highlight the superior performance of the former. Section 6 

considers the role of 'spikes' in the coloring of traffic light policy. Since spiking is not 

randomly distributed across locations, it fattens the right-hand tails of morbidity 

distributions, which darken their color coding in traffic light terms. Finally, despite 

our theoretical and conceptual focus, we conclude with a discussion of empirical 

implementation and likely policy implications in Section 7.  

2. Spatial Mitigation Policy for Covid-19 

In principle, lockdown policy for controlling pandemics runs along a continuum 

ranging from spatial targeting (of neighborhoods, quarters commuting zones, cities 

and regions) through to uniform, one-size-fits-all measures with no spatial 

differentiation.  In practice, the practicalities of implementation and interest-group 

pressures reduce the range of mitigation measures available to policy makers.  

Proposals for zone-based lockdowns are invariably based on existing administrative 
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units such as postal codes, statistical areas or communes (Monras 2020, Oliu-Barton 

et al 2020). To operationalize targeted mitigation policies, law enforcement agencies 

need to translate non-intuitive zoning schemes into demarcated territories 'on the 

ground'. This is not always practicable, especially as not every zone is self-contained 

in terms of critical health and welfare services to accommodate even short-term 

closure.  

Uniform lockdown policies similarly suffer from political pressures to absolve 

individual sectors or segments of the population or from inconsistent implementation 

as policy enforcement suffers erosion over successive pandemic waves (Warren et al 

2020). Given that many of the proposed policy measures for constraining labor and 

population mobility have never been implemented before, their economic and social 

costs are effectively unknown. 

Traffic Light Policy in Practice 

The European Center for Disease Control produces weekly traffic light maps at the 

NUTS2 level in an attempt to co-ordinate travel restrictions across EU member states 

(ECDC 2021). This system uses four color labels (green, orange, red and dark red) to 

classify travel risk areas across the EU based on two common variables:  the 

'notification rate' defined as the total newly notified Covid-19 cases per 100 000 

population over the previous 2 weeks, and the 'test positivity rate' defined by the 

percentage of positive tests across all Covid-19 tests over the previous week. Traffic 

light color changes are determined by administratively determined cut-offs1.  

The British government operates a 4-tier strategy to control the spread of Covid-19 

while differentiating across locations. Local restrictions are imposed on a complicated 

mix of geographies varying from counties, unitary authorities, combined authorities to 

London boroughs (Cheshire and Singleton 2020).  The four-tier system ranges from 

Tier 1 (Medium Alert) to Tier 4 (Stay at Home). Key epidemiological indicators for 

measuring the intensity of the epidemic and moving across tiers include case detection 

                                                           
1 The cut off values are for notification rate (nr) and test positivity rate (tp) are:  green= nr<25 and 

tp<4percent; orange=nr<50 and tp>4percent or 25<nr<150 and tp<4percent; red=nr>50 and tp>4 

percent or nr>150 and dark red=nr>500. 

The choice of the cut-off values for nr and tp is nowhere justified. It is likely that they are the result of 

political  negotiation: the original proposal for a coordinated response for  restricting free movement 

suggested more stringent values: https://eur-lex.europa.eu/legal-

content/EN/TXT/?qid=1604080584943&uri=CELEX%3A52020DC0499 

  

https://eur-lex.europa.eu/legal-content/EN/TXT/?qid=1604080584943&uri=CELEX%3A52020DC0499
https://eur-lex.europa.eu/legal-content/EN/TXT/?qid=1604080584943&uri=CELEX%3A52020DC0499
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rates in all age groups, case detection rates in the over-60s, rates of change in these 

indicators, the test positivity rate, and the pressure on the public health system. Again, 

the relative weights of these factors are not formalized and the criteria for movement 

through the different levels are consequently impressionistic and opaque2.  

In New Zealand the government uses a four-level alert system to institute different 

degrees of lockdown and mitigate mobility (NZGOV 2020). At each level, measures 

get progressively more restrictive. Thus Level 1 indicates that the disease is contained 

locally but not nationally. Level 2 denotes that while the pandemic is contained a risk 

of community transmission exists. At Level 3 there is a high risk that the disease is 

not contained and this evokes an appropriate range of lockdown and distancing 

measures. Finally, at Level 4 widespread outbreaks and transmission occur that call for 

stringent constraints on mobility and social interaction. However, these alert levels are 

national in nature and are not spatially differentiated across the 20 District Health 

Boards which serve as the units for the regional management of Covid-19. 

In France a five-level alert system exists (Connexion France 2020). The countries’ 

102 Departments are classified into 5 zones ranging from green (clean) areas through 

alert zones, heightened alert zones, maximum alert zones and state of health 

emergency zones. The intensity of the pandemic in different locations is measured by 

morbidity rates, level of contagion amongst the elderly and impact on intensive care 

facilities.  

Israel uses a four-tiered, color-coded, traffic light system for operationalizing spatially 

differentiated lockdown (MoH 2020a). The basic spatial unit for mitigation policy is 

the city or local authority with some of the largest cities subdivided into 

neighborhoods. Each spatial unit is awarded a numerical epidemic intensity score 

based on a transparent formula. Cities are assessed bi-weekly and assigned color 

codes ranging from green through yellow and orange to red, corresponding to 

different levels of lockdown stringency3. 

                                                           
2 The arbitrary nature of this tier-based allocation is reflected in written statement to Parliament by the 

Minister of Health and Social Care: “while each metric is important in its own right, the interplay 

between each indicator for a given area is equally important, so a hard and fast numerical threshold on 

each metric is not appropriate”. (GOVUK 2020) 

 
3 The formula used for assigning places to color codes is publicly available (MoH 2020b).  Each spatial 

unit i is assigned an intensity score (S) defined as: 
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Color coding has not been static and Covid-19 locational intensities tend to vary over 

time. 'Red' locations can turn 'green' and vice-versa. Using data for some 2000 

statistical areas in Israel, we have constructed dynamic maps of the spread of the 

epidemic, which show that traffic light colors vary considerably. They also show that 

as of July 2021 40 statistical areas remained 'Covid clean' (see HUGIS 2020). 

As Covid-19 is about local contagion it makes sense to design spatial mitigation 

policy at the most granular level of resolution available. For example, Israeli 

mitigation policy in the first-wave of Covid-19 was designed nationally and lockdown 

and related mitigation policies were applied nationwide.  To measure national 

intensity of the epidemic, Re , the effective reproduction rate was invariably used.  In 

subsequent waves, mitigation policy increasingly had a geographic design in 

recognition of the spatial heterogeneity of the epidemic. The so-called 'traffic light' 

system aims to apply mitigation policy differentially across locations. 

    

Literature Review 

A variety of methodological approaches to assessing the role of mobility restrictions 

for mitigating Covid-19 transmission has been attempted at different spatial scales 

and in diverse national contexts.  For example, using time series data Wieland (2020) 

                                                           

𝑆𝑖 = 𝑘 + 𝑙𝑛(𝑁𝑖 𝑋 𝐺𝑖
2) +

𝑃𝑖

𝑚
                                

where:,Ni = number of new infectives per 10,000 population in local authority i, Pi  denotes the amount 

of new positive tests conducted in  each local authority over the previous week, Gi is the  growth rate of 

infectees over the previous week  and m and k are scaling constants ensuring 0<S>10.  

However, there are various problems with this formula: 

1. It doubles counts new cases as N=P/T where T is the number of tests. If T increases for 

administrative reasons, P will tend to decrease which may artificially reduce S 

2. Suppose P happens to be large because of efficient referrals or P happens to be small because 

people decide they do not want to be tested. The formula penalizes efficiency and rewards 

tardiness.  

3. The role of G2 implies that S will be smaller in a place where N is large but decreasing, than 

where N is small but increasing. This may lead to absurd results in which hotspots are green 

and coldspots are red.   

4. S is not defined when N=0 because ln(0) is not defined. In these cases, S may be 0. If N is 

very large but decreasing, S may be low so that traffic light colors will change from red 

directly to green.  
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estimates spatial growth models for Covid-19 mortality across German counties. He 

finds a temporal mismatch between mortality trends and the implementation of 

mitigation measures. This raises questions as to the causal effect of mitigation policies 

and suggests that identification issues can undermine some of the claims attributed to 

spatial mitigation policy.  

In contrast, Gatto et al (2020) use a spatially explicit simulation model calibrated for 

Italian provinces to test scenarios for different pandemic containment measures. Their 

results suggest that mobility restrictions can reduce Covid-19 contagion by 42-49 

percent. More conservative estimates using a very different method are presented by 

Glaeser et al (2020). They use spatial panel data for New York at the zip code level to 

test the effect of mobility reductions on Covid-19 controlling for differences in testing 

rates and the concern that testing increases mobility as people travel to test centers. 

Their estimations point to a 10 percent reduction in mobility leading to a 30 percent 

decrease in Covid-19 morbidity.  

Much recent work related to spatial mitigation policy is concerned with optimization. 

Giannone et al (2020) combine a spatial SEIR model with an interregional trade 

model and calibrate the effect of mobility restrictions on national welfare using state 

level data on Covid-19 morbidity in the US. They compare spatially targeted and 

spatially uniform lockdown measures and highlight the optimal policy combination 

that integrates within-state and between-state restrictions. Their findings emphasize 

the effectiveness of local containment combined with astute timing. They also find 

that restricting trade and mobility across states reduces welfare losses but not the 

mortality rate. Consequently, they advocate a combined strategy of local lockdown 

with travel restrictions. 

In another calibrated study, Fajgelbaum et al (2020) investigate optimal lockdown 

over time and space in a commuting network. They too integrate a spatial 

epidemiological and trade model. In their framework the epidemic is transmitted 

through the interactions of commuters at their workplaces. Infected workers from one 

location infect susceptible residents from another location at third-party workplace 

locations. Containment policies such as lockdown, directly reduce the income of 

workers who stay at home and indirectly affect other locations through shifts in 

expenditures. Fajgelbaum et al (2020) simulate optimal lockdowns across the 
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continuum ranging from spatially targeted to uniform measures. They calibrate their 

model using commuting and cellphone data for New York, Seoul and Daegu, and 

compare optimal pandemic policies with observed commuting responses. Their results 

highlight the benefits of spatial targeting and underscore the effect of this policy on 

mitigating real income losses.   

Argente et al (2020) use a SIR model with multiple sub-populations and a model of 

commuting choice between sub-populations to calibrate a Covid-19 lockdown in 

Seoul. Uniquely and contravertially, the South Korean government publicly discloses 

data on Covid-19 infectees as part its mitigation policy. They study the strategy of 

information disclosure to the alternatives of information non-disclosure and uniform 

lockdown. They find that the change in commuting patterns induced by the policy of 

public disclosure considerably reduces morbidity and mortality, and it reduces 

economic costs by a factor of four compared to the alternative of uniform lockdown. 

Similar hybrid optimization models for lockdown policy that combine a (spatial-

epidemiological) SIR model with a trade/commuting economic model can be found in 

recent research by Alvarez et al (2020) and Birge et al (2020).  

In contrast to the ODE (ordinary differential equations) approach that underpins many 

of the SIR-type models, Zhu et al 2017, Prem et al 2020 and Yamamoto et al (2021) 

use partial differential equation modeling (PDE) to quantify compliance with Covid-

19 mitigation policies at the regional level in the US. This involves setting up a 

spatio-temporal model of Covid19 contagion that maintains a spatial balance in which 

the rate of Covid change in a region equals the rate at which it flows across regions 

plus the rate at which it is created or destroyed within regions. In this way, the 

formulation admits 'trade' in Covid-19 transmission distinguishing between global 

(inter-regional) and local (intra-regional) processes. However, the representation of 

regions as a string of continuous, single-dimension points along an axis in Euclidean 

space and the coarse granularity of the 10 supra-regions, arguably serve to dilute any 

meaningful insights with respect to mitigation policy at the local level.    

In summary, recent studies conclude that spatially differentiated mitigation policy is 

superior to nationwide mitigation policy. Perhaps this result was obvious in the first 

place. The main practical problem remains how to implement spatially differentiated 

policy. Since these studies are based on calibration, their policy suggestions are 
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inevitably sensitive to calibration error, induced by indirect inference. Empirical test 

statistics for indirect inference of calibrated DSGE (dynamic stochastic general 

equilibrium) macroeconomic models have shown (Meenagh et 2019) that they are 

overwhelmingly rejected by naïve VAR models. If the same applies to calibrated 

spatial models of Covid-19 contagion, we suggest that the design of spatially 

differentiated mitigation policy be based on spatial models estimated by direct 

inference. Specifically, we suggest the use of direct rather than indirect inference 

using econometric methods for dynamic spatial panel data.      

3. A Discreet Spatial SIR Model 

Recent work incorporating spatial econometrics in the analysis of Covid-19 

contagion, illustrates the potential inherent in this approach (Krisztin et al 2020, Mitze 

and Kosfeld 2021, Wieland 2020). We extend current work by using spatial 

econometrics to handle multilateral resistance (Anderson and Van Wincoop 2003) in 

spatial networks of mutual contagion. 

Terminology 

We begin by introducing some terminology. A 'domain' is a geographic area such as a 

country or a state or province within it. Space is more 'granular' if the domain 

comprises a larger number of separate locations (granules). 'Infill asymptotics' arises 

when the number of granules tends to infinity for a given domain. 'Expanding domain 

asymptotics' arises when the domain tends to infinity for a given granule (node) size.    

Granules or locations may be regarded as 'nodes' in a network. A 'directed graph' 

depicts the connectivity between nodes. In the absence of connectivity, nodes are 

'insular'. In 'star networks' all nodes are connected to a central nucleus but otherwise 

are not mutually connected. In 'complete networks' all pairs of nodes are connected. 

'Network centrality' refers to the asymmetric importance of nodes in the network as 

measured by their 'outdegrees'. Outdegrees measure the salience of nodes in the 

network.  

We shall argue that outdegrees measure the contagiousness of locations and therefore 

constitute the primary criterion for color coding traffic light policy. We shall also 

argue that the greater the asymmetry induced by network centrality, the fatter are the 

tails of the distribution of outcomes (morbidity) in the network. Indeed, the Lindeberg 

condition of the celebrated central limit theorem breaks down if there is too much 
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network centrality. It breaks down totally in star networks (Acemoglu et al 2012) in 

which event 'black swans' in the tail affect the moments of the distribution; the tail 

wags the dog. In the context of Covid-19 these black swans are super-spreaders. 

In summary, in the absence of network centrality individual granules cannot affect the 

shape of the sand-pile; they are too small to matter. They might not matter even if 

there is limited dependence in the network. At the other extreme the nuclei of star 

networks are too big not to matter; what happens to them causes the sand-pile to 

collapse. Their outdegree is infinite induced by chain reaction within the network. As 

we shall see, size is not necessarily physical; it is measured by outdegree. 

SIR Model             

Let yt denote an N-vector of Covid-19 morbidity during time period t (e.g. daily, 

weekly positive diagnoses) where N denotes the number of locations in the domain. 

Let kt denote an N-vector of infectives at the beginning of period t. Let W denote an 

NxN connectivity matrix between locations with elements wjh where wjj = 0 and with 

∑ 𝑤𝑗ℎ
𝑁
ℎ≠𝑗 = 1, i.e. the leading diagonal of W is zero and W is row-summed to 1 for 

purposes of normalization. The basic first-order spatiotemporal model for yt may be 

written as 

𝑦𝑡 = Λ𝑦𝑡−1 + Γ𝑊𝑦𝑡 + Π𝑘𝑡 + Ψ𝑊𝑘𝑡 + 𝜀𝑡             (1) 

where capital Greek symbols are NxN diagonal matrices with, e.g, elements j for , 

which measure the temporal autoregressive component of y, j measures the spatial 

autoregressive component (SAR), j measure the infection rate in location j with 

respect to its own infectives, and j measures the infection rate in location j with 

respect to infectives elsewhere. Finally,  > 0 is an iid random N-vector measuring 

idiosyncratic morbidity. Notice that if  =  = 0 equation (1) reverts to a standard 

model of contagion in which each location is an island unto itself. Under such autarky 

estimates of  and  may be used to calculate Rj because by definition there is no 

'trade' in Covid-19.   

We assume that recovery rates (0 <  < 1) for infectives vary by location, hence: 

 𝑘𝑡 = Φ𝑘𝑡−1 + 𝑦𝑡−1 + 𝑒𝑡−1                               (2) 
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where  is an NxN diagonal matrix with elements 0 < 1 - j = j < 1, and e > 0 is an 

iid homoscedastic N-vector of random shocks to recovery. When e = 1 an existing 

infective does not recover, as a result of which the number of infectives (k) increases 

by 1 directly, but the number diagnosed remains unchanged. Mean time to recovery 

is: 

                                                            𝜏 = ∑ 𝑖𝜙𝑖 =
𝜙

(1−𝜙)2
∞
𝑖=0               (3)   

For example, if  is 2 weeks equation (3) implies  = 0.766; the recovery rate () is 

0.233 per day. In summary, the model has two stochastic components related to 

morbidity () and delayed recovery (e). These shocks are positive because morbidity 

and delayed recovery cannot be negative.  

Equation (1) ignores 'removals', represented here by recoveries, which reduce the 

population of susceptibles. This simplification, made in the interest of linearity,   is 

reasonable, especially in the early stages of an epidemic, but matters would be 

different when it enters its mature stage.  

Equation (1) may be rewritten as: 

𝑦𝑡 = G𝑦𝑡−1 + Β𝑘𝑡 + 𝐴𝜀𝑡                                    (4) 

where A = (I - W)-1, G = A and B = A( + W). Equations (2) and (4) jointly 

determine the dynamics of y and k. The Wold representation for y is obtained by 

substituting equation (2) into equation (3) for k: 

                         𝑦𝑡 = (Φ + 𝐺 + 𝐵)𝑦𝑡−1 − 𝐺Φ𝑦𝑡−2 + 𝐴𝜀𝑡 − 𝐴Φ𝜀𝑡−1 + Β𝑒𝑡−1        (5)  

Equation (5) characterizes the spatiotemporal contagion for Covid-19 morbidity (y). 

The second order temporal dynamics stem from the fact that current morbidity during 

period t depends on infectives at the start of period t, while the latter varies directly 

with morbidity in period t-1. Equation (5) generates a rich taxonomy for the 

transmission of Covid-19 morbidity shocks () and recovery shocks (e) across 

locations and over time. 
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Figure 1A Simulated Morbidity (y) 

 

 

Figure 1B Simulated Infectives (k) 

 

Figure 1 simulates the dynamics of y and k for a domain represented by a 10x10 

square lattice (hence N = 100) in which spatial dependence is based on first-order 

rook contiguity. W is row summed to unity inside the lattice, to 2/3 on its edge and to 

1/2 in its corners. This normalization results from the fact that inside the lattice spatial 

units have four immediate rook neighbors, on the edge they have three, and in the 

corners, they have two. Therefore, spatial units differ in terms of their centrality. 
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However, they are otherwise homogeneous because they share the common 

parameters;  = 0.3,  = 0.1,  = 0.4,  = 0.2, and  = 0.9. The initial conditions for y 

and k are zero (before the outbreak of Covid-19). The epidemic is initialized by 

randomly drawing  in period 1 from a spatially independent homoscedastic 

lognormal distribution (to ensure that  is not negative) for each spatial unit in the 

lattice. In period 2 e and  are drawn for each spatial unit. And so on until period T, 

which equals 20 in Figure 1. This history is repeated 1000 times, and the means of y 

and k are plotted in Figure 1. 

Figure 1A is a 'spaghetti' graph in which the bold schedule plots the average value of 

y in each period, and the 100 other schedules plot the simulated panel data for y. 

Clearly, y is explosive because the choice of parameter values implies that R exceeds 

1. This befits an epidemic in its early stages before 'removals' have a damping effect 

on the propagation of the epidemic. In period 20 average morbidity is close to 10,000. 

However, in some locations it is as high a 160,000 while in others it is as low as 

7,000. These differences are induced by randomness in  and e as well as differences 

in centrality as discussed below. Figure 1B shows a similar pattern at a different scale 

for simulated infectives. 

Figure 2A plots the histogram for morbidity (y) generated by Figure 1A in period 20. 

The distribution may be fat-tailed for two reasons. First, because  and e have 

lognormal distributions, integrals of  and e are skewed to the right. Second, as noted 

by Acemoglu et al (2012), star network effects, induced here by spatial dependence, 

generate right fat-tails.  

Since the log counterpart of Figure 2A is not fat-tailed, only the first of these 

phenomena is present. However, when T is increased to 100 Figure 2A tends to have 

fatter tails. Furthermore, when W is defined in terms of inverse distance instead of 

rook-contiguity, the counterpart to Figure 2A is fatter tailed because inverse distance 

implies the network is complete whereas it is incomplete under contiguity. 
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Figure 2A The Distribution of Morbidity after 20 Periods  

 

Figure 2B plots the heat map generated by Figure 2A in which tiles refer to their 

location in the lattice. The greatest morbidity in period 20 occurs in location with 

address row 10 column 6 (deep blue). Notice that the locations in the tail of Figure 2A 

are spatially clustered. There is also evidence of spatial clustering regarding locations 

in other parts of the distribution.   

Figure 2B Heat Map for Morbidity in Period 20 
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4. Spatial Mitigation Policy Using Outdegrees        

In this section we use the spectral decomposition of a matrix to present an alternative 

method to R for ranking the contagiousness of locations. We rank them using 

outdegrees, measured by the columns sum of spatiotemporal propagation matrices 

derived from spatiotemporal contagion models such as equations (1) and (2). 

Outdegrees measure the effect of a random increase in morbidity in a location on 

morbidity within this location as well as in all other locations. Outdegree therefore 

measures the global contagion generated by infectives in each location; it includes 

indigenous contagion as well contagion exported to other locations. By contrast, R 

calculated for locations does not distinguish between exported and imported 

contagion. We also present results of sensitivity tests for key model parameters and 

for different spatial geometries. 

Setting  =  = 0 in equation (1) greatly simplifies matters by making y recursive to k 

and implies the following first order spatiotemporal model for k: 

 𝑘𝑡 = Ω𝑘𝑡−1 + 𝑣𝑡−1           (6) 

where Ω = Φ + Π + Ψ𝑊 with elements sn and v =  + e. The general solution for k 

is the Wold representation for equation (6): 

𝑘𝑡 = ∑ Ω𝑗−1𝑣𝑡−𝑗

∞

𝑗=1
              (7) 

The s'th column sum of j-1 measures the j-1'th order outdegree for Covid-19 shocks 

in location s on all locations including s. When j = 2 let ∑ 𝜔𝑠𝑛 = 𝑥2𝑠  𝑁
𝑛=1 denote the 

column sum for location s. Hence x2s measures the impact of a Covid-19 shock (vst-2) 

in period t-2 on the total number of infectives at the end of period t-1. It measures the 

degree to which location s exports contagion in the short-run to all locations including 

itself. The s'th column sum (𝑥3𝑠) of 2 measures the degree to which location s 

exports contagion following a Covid-19 shock in period t-3 (vst-3). Henceforth, let 

s() denote a column sum operator for column s of a matrix such as .    

Using the spectral decomposition for Ω = Ζ𝐻Ζ′, where H is a diagonal NxN matrix of 

eigenvalues of , and Z denotes its matrix of eigenvectors with elements sn, we may 

express j-1 as: 
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 Ω𝑗−1 = Ζ𝐻𝑗−1Ζ′                      (8) 

If k is stationary the eigenvalues must be less than 1, in which event  converges to 

zero with j. Matters are different if k is nonstationary, which arises if at least one of 

the eigenvalues is at least 1. Equation (8) establishes that xjs depends on powers of the 

eigenvalues, which decrease with j in the stationary case and increase otherwise. 

Importantly, it also implies that xs may be ranked by x2s as demonstrated below.  

 In the stationary case, the long-term contagiousness of location s is defined by: 

 𝑥𝑠 = ∑ 𝑥𝑗𝑠 = ∑ 𝜒𝑠(Ζ𝐻𝑗−1Ζ′)

∞

𝑗=1

                                  (9)

∞

𝑗=1

 

which is convergent by definition. In the nonstationary case equation (9) is divergent.  

Figure 3A is the heat map for outdegrees of  in equation (7). It is the heat map for 

the outdegrees for infectives (k) generated by the simulated counterpart to Figure 1B 

when  =  = 0 and W is defined in terms of inverse distance instead of rook -

contiguity. The outdegrees range between 1.45 and 1.533. They are smallest in the 

corners (periphery) and largest in the epicenter. An outdegree of 1.45 means that a 

unit shock to vt-1 increases total infectives (k) in period t by 1.45. Since the direct 

effect of a unit shocks is 1, the indirect effect induced by contagion between and 

within locations is 0.45 in the corners of the lattice. At the epicenter of the lattice this 

contagion effect is 0.533. Notice that the heat map is symmeteric. For example, 

locations with addresses row 1 columns 2 and 9, row 2 columns 1 and 10, row 9 

column 1 and 10 and row 10 column 2 and 9 have outdegrees equal to 1.467, The 

closer to the epicenter the greater the outdegree. Centrality is the only reason why 

outdegrees differ because all locations share the same parameter values. 

The symmetry of the heat map is induced by the shape or topology of the domain. For 

example, a triangular lattice would have generated an asymmetric heat map. The same 

pattern applies in panel B. The outdegrees refer to the effect of a unit shock to vt-1 

after two periods. They are larger than in panel A because k is nonstationary, 

otherwise the outdegrees would have been smaller than in panel A. Notice that the 

ranks of the column sums are the same in panels A and B. The cumulative impulse 

response for corner locations is 1.45 + 2.109 = 3.559. Contagion has increased from 
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0.45 to 2.559. After a further period contagion increases by a further 3.078 (not 

shown). At the epicenter contagion is 6.447 after three periods. 

Figure 3 Heat Map: Outdegrees for Infectives 

Panel A:  

 

2Panel B:  
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Relaxing the restriction  =  = 0 in equation (1) complicates matters because y is no 

longer recursive to k. Rewrite equation (5) as: 

𝑦𝑡 = 𝑀𝑦𝑡−1 + 𝐹𝑦𝑡−2 + 𝑣𝑡                 (10) 

where M =  + G + B, F = -GB and vt = At - At-1 + Bet-1. The general solution to 

equation (10) is: 

𝑦𝑡 = 𝑄𝑣𝑡                        (11) 

Where 𝑄 =  (Ι − 𝑀𝐿 − 𝐹𝐿2)−1 and L is a temporal lag operator. Expanding the 

inverse gives the first terms as I + ML + (F + M2)L2 + (MF + M3 +MFM)L3. If y is 

stationary the coefficients of powers of L decrease towards zero. The instantaneous 

outdegree for location s with respect to a Covid-19 morbidity shock (st) is the s'th 

column sum of A, i.e. s(A). Its counterpart for a morbidity shock in period t-1 is 

s(M) -s(A). The Wold representation for y with respect to  takes the form: 

𝑦𝑡 = ∑ 𝐶𝑗𝜀𝑡−𝑗                (12)
∞

𝑗=0
 

where Cj are NxN matrices which increase with j if y is nonstationary, and tend to 

zero with j if y is stationary. We refer to the outdegrees of Cj as the j'th order 

outdegree.    

The heat maps for equation (12) are shown in Figure 4 with respect to unit shocks in 

t and t-1 on yt. The pattern in Figures 4 is the same as in Figures 3. Centrality 

matters. The ranks of outdegrees in panels A and B are the same. Note that the 

outdegree magnitudes in Figures 4 cannot be compared to those in Figures 3 because 

the latter refer to y while the former refer to k, and the data generating processes are 

different because in Figures 4,  and  revert to their values in Figure 1. However, in 

Figures 3 and 4 y and k are nonstationary as is clearly apparent in Figure 1 and is 

reflected in the fact that the elements of C increase between panels in Figure 4. 

Panels A, B and C refer respectively to the heat maps for zero-order, first order and 

second order outdegrees. To obtain the cumulative outdegrees simply sum the 

outdegrees in panels A, B and C. For example at the epicenter the cumulative 

outdegree after three periods is 10.244, and in the periphery (corners) it is 6.652. 
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Figure 4 Heat Map: Outdegrees for Morbidity (Equation 12) 

Panel A: C0

 

Panel B: C1 
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Panel C: C2 

 

Sensitivity analyses show with respect to  that if  (spatial contagion rate)) is 

increased in one location its outdegree remains unchanged (experiment 1 in the 

Appendix). The outdegrees for all other locations increase because if the location in 

question imports more morbidity, the others must export more. However, their 

outdegree ranks remain unchanged. Hence, the rank of the outdegree of the prtutbed 

location decreases. 

If  (time to rcovery) is increased in one location its outdegree increases because its 

infectives remain contagious for longer, while the outdegrees in all other locations 

remain unchanged (experiment 2 in Appendix). If  (indigenous contagion rate) 

increases in one location its outdegree increases because its infectives are more 

contagious, but outdegrees elsewhere decrease (experiment 3) because the location in 

the experiments crowds out contagion elsewhere. 

Since  does not depend by definition on  and , experiments involving these 

parameters are based on the outdegrees for the C matricies in equation (12) with 

baseline values presented in Figure 4. The latter are repeated for convenience in Table 

1 (baseline). The final column in Table 1 refers to the cumulative outdegrees after 
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three periods. For example, in the corners of the lattice an additional case of morbidity 

infects 6.652 nationally after three periods. 

In experiment 4  (inertia in morbidity) is increased to 0.35 from 0.3 in column 1 row 

6 (treated location). Since  is a temporal autoregressive parameter, it has no effect on 

C0, hence the instantaneous outdegree remains unchanged at its baseline value. After 

one perod the outdegree of the treated location increases from 1.809 to 1.86 (via C1) 

but the other outdegrees remain unchanged in all locations. The increase in  

increases the propagation of morbidity within the treated location, as a result of 

which, it exports more Covid-19. After a further period (C2) the outdegrees decrease 

in experiment 4 relative to the baseline, as do the cumulative outdegrees (C0 + C1 + 

C2) due to complex roots in the dynamical system of contagion.   

Table 1 Outdegree Sensivity to  and  

             C0          C1           C2 C0 + C1 + C2 

Baseline     

Corner 1.07 1.50 4.082 6.652 

Epicenter 1.129 2.192 6.923 10.234 

Treated location 1.097 1.809 5.323 8.229 

Experiment 4: =0.35     

Corner 1.07 1.5 3.304 5.874 

epicenter 1.129 2.192 5.485 8.806 

Treated location 1.097 1.86 4.394 7.351 

Experiment 5: =0.5     

Corner 1.088 1.668 3.863 6.619 

Epicenter 1.135 2.207 5.478 8.820 

Treated location 1.104 1.89 4.505 7.499 

 

In experiment 5 the SAR coefficient for morbiditity () is increased to 0.5 from 0.3 in 

the treated location. Since the SAR coefficient refers to the current period, the 

outdegrees increase instantaneously through C0. After a further period the cumulative 

outdegrees continue to increase, but as in experiment 4 the final column in Table 4 is 

less than in the baseline.   
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If the domain of the lattice is expanded by two tiles so that the number of locations is 

increased from 100 to 144, the outdegrees increase especially on the edge and corners 

of the original lattice, but decrease slightly at the epicenter because the epicenter of 

the lattice is relatively remote from the expanded domain.  Expanding the domain 

reduces centrality, as expected. Indeed, asymptotically centrality loses its importance 

as the domain is expended to infinity. Also, the outdegrees on the expanded domain 

tend to be smaller than for the previous edge and corners (experiment 6).  

Finally, the outdegrees depend on how W is specified; they are more sensitive to 

centrality if W is defined in terms of Euclidean distance rather than rook contiguity. 

Centrality matters less with rook contiguity because each location is directly 

connected to between two and four locations, whereas with distance locations at the 

epicenter are more directly connected than locations in the periphery.  

The symmetry in Figures 3 and 4 stems from the assumption that the parameters in 

equations (1) and (2) are homogeneous across locations. In reality, these parameters 

are likely to be heterogeneous in which case the outdegree heat maps will not be 

symmetric. Consequently, outdegrees in the center may not be greater than in the 

periphery. Indeed, centrality may lose its salience. The outdegrees are an empirical 

matter depending on the estimates of the structural parameters in equations (1) and 

(2).  

5. The Relation between Outdegrees and R 

Epidemiologists use R as a measure of contagion rather than outdegrees. In this 

section we explore the relation between R and outdegrees, and explain why outdegree 

is a superior metric to R for operating traffic light policy. For these purposes, we use 

the 'overlapping generation method' (Beenstock and Xieer 2020) for calcualting R in 

real time. Instead of equation (2) the number of infectives (k) is calculated using the 

'perpetual inventory' formula: 

𝑘𝑡 = ∑ 𝑦𝑡−𝑗
𝜏
𝑗=1 + 𝑣𝑡−1                                  (13)                           

where infectives are contagious for  periods, and in equation (1)  = R/, i.e. 

infectives infect R/ susceptibles per period, while they remain infective. To fix ideas 

we assume that all other parameters in equation (1) are zero. Hence: 

𝑅𝑡 =
𝑦𝑡

𝑦̅𝑡−1+𝑣𝑡−1
                    (14)  
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Where 𝑦̅ denotes the mean of y over  previous periods. At the beginning of period t 

vt-1 is known. During period t yt is observed. If ut is assumed to be zero, equation (14) 

solves for the expected value of R, which varies by t. Notice that, as expected, 

equation (1) implies that R = 1 when y is constant, and exceeds 1 if y increases. 

Suppose, next, that there are two locations 1 and 2. Equation (13) applies in both 

locations to detrmine k1 and k2 in terms of y1 and y2 respectively, and 1 = R1/ and 2 

= R2/. Morbidity in locations 1 and 2 is: 

𝑦1𝑡 = 𝜋1𝑘1𝑡 + 𝜓1𝑘2𝑡 + 𝑢1𝑡                         (15𝑎) 

𝑦2𝑡 = 𝜋2𝑘2𝑡 + 𝜓2𝑘1𝑡 + 𝑢2𝑡                        (15𝑏) 

Solving equations (15) for 1 and 2 given 1 and 2 implies that spatially adjusted R, 

denoted by R*, in locations 1 and 2 are: 

𝑅1𝑡
∗ = 𝑅1𝑡 − 𝜏𝜓1

𝑦̅2𝑡−1

𝑦̅1𝑡−1
                       (16𝑎) 

𝑅2𝑡
∗ = 𝑅2𝑡 − 𝜏𝜓2

𝑦̅1𝑡−1

𝑦̅2𝑡−1
                       (16𝑏) 

Equations (16) adjust standard measures of R for imports of contagion. If contagion 

within locations is greater than contagion between locations then, for example, 1 < 

R2. Table 2 provides numerical illustrations for the relation between R and R*. The 

standard measures of R1 and R2 are assumed to be 1.3 and 0.8. So it appears that R is 

greater in location 1. In row 1 this rank is reversed because location 2 exports 

contagion to location 1, hence spatially adjusted R in location 1 is less than in location 

2. In row 2 the standard measure is correct because there in no trade in Covid-19. In 

row 3 spatially adjusted R is greater in location 1 than in location 2, but the difference 

has narrowed to 0.2 from 0.5. In row 4 the difference increases from 0.5 to 0.635.  

R penalizes locations, which happen to import contagion, while R* takes account of 

the outdegree of exporters. In row 1 location 1 is penalized unfairly by R whereas 

location 2 is justly penalized by R*. 
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Table 2 The Relation between R, R* and R# 

1 2 𝒚̅𝟐 𝒚̅𝟏⁄  𝑹𝟏
∗  𝑹𝟐

∗  𝑅1
# 𝑅2

# 

0.6 0 1.5 0.4 0.8 1.3 1.4 

0 0 1.5 1.3 0.8 1.3 0.8 

0.6 0.3 1 0.7 0.5 1.6 1.4 

0.3 0.3 0.8 1.06 0.425 1.6 1.1 

R1 = 1.3, R2 = 0.8. 1 < R2, 2 < R1.  

Another way of looking at the same thing is to define y* as indigeneous contagion 

plus exported contagion (instead of minus imported contagion). For location 1: 

𝑦1𝑡
∗ = (𝑅1 + 𝜏𝜓2)𝑦̅1𝑡−1                  (17) 

Let 𝑅1
# = 𝑅1 + 𝜏𝜓2 denote 'global R' for location 1, which is reported in Table 2. The 

rank of location 1 is the same for R#- and R*, but the differences are smaller in Table 

2.   

The counterparts to equations (16) and (17) in terms of outdegrees are obtained by 

substituting equation (13) into equations (15) for k in locations 1 and 2: 

(
1 − 𝜋1𝐹(𝐿) −𝜓1𝐹(𝐿)
−𝜓2𝐹(𝐿) 1 − 𝜋2𝐹(𝐿)

) (
𝑦1𝑡

𝑦2𝑡
) = (

𝑢1𝑡 + 𝜋1𝑣1𝑡−1 + 𝜓1𝑣2𝑡−1

𝑢2𝑡 + 𝜓2𝑣1𝑡−1 + 𝜋2𝑣2𝑡−1
)          (18) 

where 𝐹(𝐿) = ∑ 𝐿𝑗𝜏
1 . Equation (18) solves for the impulse responses of y1 and y2 with 

respect to morbidity shocks (u1 and u2) and with respect to recovery shocks (v1 and 

v2). The coefficient matrix has 2 eigenvalues through F(L)2. In Table 3 we report the 

zero, first and second order outdegrees for locations 1 and 2 with respect to their 

morbidity shocks. 
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Table 3 Outdegrees for Equation 18 

Outdegree 

order 

                         Location 1 (u1)                   Location 2 (u2) 

0                                           1                            1 

1 𝜋1 + 𝜓2 𝜋2 + 𝜓1 

2 𝜋1(1 + 𝜋1) + 𝜓1(1 + 𝜓2) + 𝜓2(1 + 𝜋1 + 𝜋2) 𝜋2(1 + 𝜋2) + 𝜓2(1 + 𝜓1) + 𝜓1(1

+ 𝜋1 + 𝜋2) 

 

If  is the same in both locations the difference between the first order outdegrees for 

location 1 relative to location 2 is 2 - 1 (location 1 exports more contagion to 

location 2 than does location 2 export to location 1). The difference for the second 

order outdegrees is 2(2 - 1). Notice that the ranks of the outdegrees depend simply 

on the difference between 2 and 1. If  is the same in both locations the outdegree 

difference is 1 - 2 (1
st order) and 1(1 + 1) - 2(1 + 2) (2

nd order); the difference 

depends on the difference between . Since e.g. 1 = R1/, the relation between 

outdegrees and R is readily obtained.  

6. Spiking 

In section 3  and e were assumed to be iid and their distributions symmetric across 

locations. This leaves outdegree as the sole criterion for operationalizing traffic light 

policy. It also means that morbidity cannot 'spike' because the probability of large 

morbidity shocks does not vary over time. In practice, the distribution of  in 

particular may vary by location, and it may not be iid.  

If the variance in location s is larger than in location j, the probability of drawing 

large lognormal morbidity shocks is obviously greater in s than in j. If the outdegrees 

in s and j are the same, common sense suggests that location s should be 'redder' than 

location j. The same would apply if the variances happen to be the same, but the 

distribution is more skewed in s than in j; it has fatter right tails. 

If  is not iid this might happen for a number of reasons. First,  is serially correlated; 

morbidity shocks are persistent. Persistence induces spiking because shocks propagate 
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over time. If persistence is greater in location s than in location j, all else the same, 

location s should be redder than location j. Second,  is an ARCH process (the 

variance is conditionally autocorrelated, Kamalov and Thabta 2021); the uncondional 

variance is homoscedastic but the conditional variance is not. ARCH processes may 

induce spiking because the varance of  increases before it returns to its unconditional 

counterpart. Larger variances increase the probability of drawing larger lognormal 

shocks. If the ARCH coefficient in location s is larger than in location j, location s 

should be redder. Third, if  is a diffusion-jump process  it will be characterized by 

spiking depending on the size of the jump and its arrival rate. If these parameters are 

greater in location s than in location j, all else given, location s should be redder.  

Equation (19) is a 1st order autoregressive 'jump' model for  in location s in which 

persistence varies directly with  > 0, the jump size is J > 0,  denotes its (Poisson) 

arrival rate, and w is an iid residual error: 

 𝜀𝑠𝑡 = 𝜌𝑠𝜀𝑠𝑡−1 + 𝐹(𝐽𝑠, 𝜅𝑠) + 𝑤𝑠𝑡                    (19) 

The 1st order ARCH model for  is: 

𝜎𝑠𝑡
2 = 𝛼𝑠 + 𝜇𝑠𝜀𝑠𝑡−1

2                                     (20) 

If  < 1, J,  and  < 1 are zero and s =  we revert to the symmetric iid case in 

section 3. The unconditional variance for  in location s is 𝛼𝑠 (1 − 𝜇𝑠)⁄  . Since these 

parameters are empirical matters, they may be estimated together with the structural 

parameters in equations (1) and (2). Locations with larger estimates of  etc are 

spikier and therefore redder. Estimation of time series models combining jump and 

ARCH proceses have been discussed by Drost, Nijman and Werker (1998). 

Equations (19) and (20) are spatially independent. If necessary, equation (19) may be 

specified as a spatial error model (SEM) and equation (20) as a spatial ARCH model 

(Beenstock and Felsenstein 2019).  
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7. Conclusions 

We propose outdegree from graph theory as a sufficient statistic for measuring the 

contagiousness of locations for operating 'traffic light' policy as an alternative to 

national mitigation policy.  This measure is applicable to any contagious disease and 

not just Covid-19. The outdegree for locations measure their contribution to national 

morbidity. Outdegree justly penalizes locations for the contagion that they propagate. 

By contrast the practice of calculating R for locations unfairly exonerates locations, 

which export contagion, and penalizes locations, which import contagion. Standard 

measures of R make traffic light policy accident prone. By contrast, traffic light 

policy based on outdegree make it efficient as well as just.  

We draw six tentative policy highlights from the theoretical model. The first is that 

mitigation needs to be directed at exporting locations rather than importing locations. 

In practice public policy has tended to treat them as equal.  Interventions such as 

mobility constraints and lockdowns have not distinguished between Covid-19 origins 

and destinations. The second relates to policy targeting.  Mitigation policy needs 

implementation at a high level of granularity that is politically and practically 

feasible. Interventions that are too granular run the risk of being challenged in the 

courts on the basis of unjust discrimination. Also, highly granular spatial units such as 

census tracts may not be practical for implementation because they cut across 

administrative boundaries, which are less granular. Third, policy prescriptions for 

super-spreading need to tread a fine line between stick and carrot incentives. As 

super-spreader locations are central nodes related to a finite number of dependent 

satellite locations, heavy-handed mediation is likely to have unanticipated knock-on 

effects on other (Covid-importing) locations.  

Fourth, outdegrees are fixed in the theoretical model if the structural parameters do 

not change, implying that traffic light colors do not change over time. There is no 

traffic light mobility. In practice, traffic light coloring has been mobile, changing 

from green to red and back again within weeks. We see this dissonance as a result of 

R-based traffic light policy. R may change from week to week when outdegrees 

remain unchanged. There is an obvious danger of 'instrument instability' or delayed 

policy overkill. For example, the traffic light turns from red to green to alleviate a  

congestion but reverts to red  before  the effect of the change can take effect. 
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Frustrated drivers will no doubt recognize this phenomenon. In terms of  traffic light 

policy for mitigating  Covid-19 contagion, locations can change their color coding 

radically, going from green to red  designations. However the  policy response to this 

color change may only take effect when the new color designation is no longer 

relevant, inducing policy overkill and instrument instability. In contrast, outdegree 

theory predicts that traffic light coloring should be relatively stable.  

Fifth, morbidity spikes more where the spiking parameters (ARCH, jump-size etc) 

happen to be larger. Although they are not hard-wired, these parameters are likely to 

be stable. Hence their contribution to traffic light shading is unlikely to be volatile. 

Here too, delayed spike chasing may induce instrument instabilty. These policy 

propositions may be assessed using econometric estimates of the SIR model and its 

model for morbidity shocks. 

Sixth, if the factors that increase outdegrees can be identified at specific locations this 

provides the key for targeted policy prescriptions. For example, the outdegree of a 

location may happen to be large because of indigenous contagion in an importing 

location. Hence, mitigating contagion in the importing location will reduce the 

outdegree in the exporting location.  

We conclude with reflections on bringing theory to data.  Since outdegree is the 

column sum of propagation matrices in spatiotemporal models of contagion, the 

spatial econometric methodology for their estimation is readily available. Hence, to 

operationalize outdegree as the criterion for efficient traffic light policy design is 

relatively straightforward. Indeed, in this paper we have described how to derive 

outdegrees from spatiotemporal econometric models of contagion.       

For reasons of transparency we have focused on the 'natural history' of Covid-19 

spatial transmission (Beenstock and Dai 2020). In Figure 1 the natural history of 

Covid-19 is nonstationary. In reality the 'unnatural history' is mostly stationary and 

wave-like thanks to mitigation policy in 2020 and to vaccination policy in 2021. 

Mitigation policy was initially national or federal but subsequently specific locations 

were targeted through experiments with traffic light policy. In bringing theory to data, 

it will be essential to take mitigation and vaccination policy into consideration.   

In the theoretical model space is represented by an orderly lattice. In reality space is 

messy; borders are political and social as much as physical. Also, real space looks 
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more like a jigsaw puzzle than a chessboard. This is critical as many spatially 

differentiated mitigation policies are contingent on social practices, cultural norms or 

administrative conventions unique to particular locations. Mask-wearing is a case in 

point: in certain locations this may be considered as acceptable and reasonable while 

in others it is met with opposition and resistance.  

Econometric methods for estimating the 'spiking' model for morbidity innovations are 

also available. However, we suggest a two-stage procedure in which their 

distributions are initially assumed to be iid and symmetrical. If they are not, the 

parameter estimates of the SIR model are consistent but not efficient because the 

model is linear. If necessary, the spiking model for the morbidity innovations may be 

estimated in the second stage.      
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                                               Appendix: Sensitivity Analyses 

Experiment 1 

Heat map for outdegrees for  when  is increased from 0.2 to 0.8 in row 5 column 

1. Outdegrees increase everywhere except for row 5 column 1. 

 

Experiment 2 

Heat map for outdegrees for  when  is increased from 0.9 to 0.95 in row 1 column 

6. Outdegree increases in row 1 column 6 and remain unchanged elsewhere.  
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Experiment 3 

Heat map for outdegrees for  when  is increased from 0.4 to 0.45 in row 1 column 

6. Outdegree increases in row column 6 and decrease everywhere else.  

 

Experiment 4 

  is increased from 0.3 to 0.35 in row 1 column 6. See Table 1 in text. 

Experiment 5 

 is increased from 0.3 to 0.5 in row 1 column 6. See Table 1 in text.  

 Experiment 6 

Expand domain to 12x12 lattice. Heat maps for column sums of  and C1.  
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 

 

C1 
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