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Abstract: 

Starting in March 2020, the spread of Covid-19 caused fundamental societal changes and 

challenges. Besides a variety of negative effects of the pandemic, we focus on a specific side effect 

with partially positive impact. Due to the pandemic and the lockdown measures, the air traffic 

collapsed in March 2020. Residents, close by the airport who faced massive aviation noise pollution 

suddenly experienced “an event of silence”. We exploit this sudden decrease of noise to analyze 

whether the noise decrease affected housing prices for apartments located within the noise contour 

of German airports. To derive causal estimates, we exploit a two-way fixed effects model using 

apartments in the proximity of the airport. We argue (and empirically show) that the control regions 

do not differ from the treated ones. While the pandemic was initially expected to affect the noise 

level only temporarily, the course of the pandemic illustrated a permanent shock through, for 

example, the rise of virtual meetings. Our results strongly support our hypothesis. While there is 

basically no effect on apartment prices before the first lockdown, we observe a price increase of 3% 

after the lockdown when it became obvious that the aviation sector will not recover swiftly. The 

effect is even stronger in the first half of 2021 (5%). For those locations exposed to high noise levels 

(before the pandemic), the effect even peaks at 8%. The paper contributes to the literature in two 

ways: First, the change of pollution is truly exogenous without any announcement or selection 

problems which typically evolve in similar papers regarding disamenities and housing prices. 

Second, in contrast to most evaluation showing that the erection of a disamenity affects prices 

negatively, we show the opposite effect. Locations, which permanently suffered from pollution in 

the past, are able to immediately catch up again, once the pollution is alleviated. This is good news 

for urban planning since local environmental policies seem to be meaningful.  
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1. Introduction 

The effect of environmental pollution on housing prices is a prominent field in urban and regional 

economics. As housing prices reflect the value of living in a certain neighborhood, it is not only 

relevant with regard to the housing market, but it gives important insights on the reactions of people 

when being exposed to environmental pollutions.  

Within the broad field of disamenities (including environmental pollutants), we focus on the 

effects of airport noise on housing prices. Recent literature of the past decade provides evidence in 

numerous studies on the substantial impact of airports and the linked pollutions on health (e.g., Boes 

et al. 2013 and Schlenker & Walker 2016) and well-being (Lawton & Fujiwara 2016). In our study, 

we use the first Covid-19 lockdown in March 2020 and the associated massive decrease in traveling 

and flights at German airports to evaluate the effects of reduced aircraft noise. Compared to many 

other studies in the literature, this approach has three key advantages.  

First, the global lockdowns in the course of the Coronavirus pandemic could not be predicted, so 

we can clearly characterize the decrease in noise as an exogenous event. As the lockdown hit most 

economies and travel bans and closed borders are one of the most prominent non-pharmaceutical 

measures to slow down the spread of the virus, the pandemic is characterized by a huge decrease in 

aviation activities at German airports. Thus, unlike general changes in noise around airports, no 

announcement effects or other policy influences on the decline in noise are problematic for us and 

we can show that we are able to analyze substantial changes of the noise pollution.  

Second, the different stages of the pandemic allow us to measure a decreased noise level over a 

longer period of time, with different expectations on future noise. Whereas in the first phase of the 

Covid pandemic there was an assumption that air traffic would recover to the old level as the 

pandemic was (quickly) overcome. Over the course of the pandemic, there has been a growing 

awareness that air traffic will be permanently restrained. This is particularly related to the increased 

use of virtual meetings (which will limit business flights in the long term) and the continued growth 

of government efforts to limit CO2 emissions. With a view to avoiding emissions, domestic flights 

will also decrease significantly after the pandemic.  

Third, almost all airports are affected by the pandemic1 and thus we can analyze accompanying 

circumstances that lead to stronger or weaker effects. In addition, there is a special feature of German 

1 Airports that have particularly heavy cargo traffic are the least affected. 
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airports. In particular, the small regional airports in Germany had to cope with long-term losses even 

before the pandemic. Their future prospects after overcoming the pandemic are therefore very poor 

(individual airports, for example Frankfurt-Hahn or Paderborn, have already declared insolvency). 

In contrast, the major airports (such as Frankfurt, Munich and Dusseldorf) are very likely to see 

strong air traffic again after the pandemic. Our setup allows us to consider different intensities of 

noise reduction in both the temporal and spatial dimensions.  

We build our analyses on a data set linking German apartment offers and contours of aviation 

noise surrounding German airports. The offer data are taken from the RWI-GEO-RED data set 

(described in Schaffner 2020) which comprises all offers from the German market leader in housing 

advertisements ImmoScout24. We focus on the data sets of apartments for sale. Using the individual 

offers, we benefit from the information on the exact geographical location given in RWI-GEO-RED 

that allows us to directly link the housing data to the information of the aviation-noise contour 

surrounding the airports. These noise contours illustrate the comprehensive exposition to aviation 

noise of each location surrounding the airport (before the pandemic). The merge of the data gives a 

very detailed impression on the noise pollution that affects the individual offers.  

Given the detailed information for each apartment on noise pollution and time of the offer, we 

exploit a two-way FE model (on the location in a noise exposed area and the time before and after 

the onset of the pandemic) allowing us to identify causal effects of the treatment on the treated. The 

model follows the idea of a difference-in-difference analysis and the interaction of both fixed effects 

forms a treatment indicator. The treatment group is defined by all those apartments affected by severe 

aviation noise (above 55dB before the pandemic). In contrast, the control group comprises all 

apartments that are also located close to the airport in a surrounding of up to five kilometers but that 

are not affected by noise. This close geographical link ensures that both groups are affected equally 

by other developments in the pandemic (e.g., local lockdown measures or shocks of specific 

branches). Additionally, contradicting effects of the decline of flights (and noise) such as job losses 

at the airport or aligned businesses hit both groups equally. This focus on a geographically very 

restricted sample ensures that our analyses are able to detect pure noise effects.   

The results clearly hint at effects of the noise reduction on housing prices. While there are 

basically no observable effects in the first months of the Covid-19 outbreak (marking the first 

lockdown in Germany), we observe an increase of apartment prices of about 3% during the summer 

of 2020. While this period is marked by a low incidence and rather lax restrictions, it revealed that 
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the aviation sector does not recover quickly to the pre-crises level. We find the strongest effect for 

spring in 2021, which is also characterized by low Covid-19 incidences. Here, the positive effect 

increases to about 5%. Although, the noise-level at this time is considerably higher than during the 

strong lockdown period, the effect might illustrate a change of perceptions of residents that the 

pollution will remain lower permanently (compared to the pre-Covid-19 period). Within locations 

with priorly very high noise exposure, the effect peaks to about 8%. 

Our study, therefore, approaches the relationship between housing prices and disamenities in 

reversed way compared to most other papers. We do not focus on evaluating a disamenity with the 

result that it impacts apartment prices negatively but we show a positive effect in absence of the same 

disamenity. This is an important contribution with highly real-world relevance because it hints at 

improvements of living standards once the burden is lifted. Policymakers might be keener to take 

actions to reverse disamenities if the positive effect of their removal has been shown. 

 

2. Background: Airport Noise in the literature 

Airports can be ambiguous in their effects on the local community. On the one hand, they are an 

important employer of the region either directly or indirectly through numerous suppliers. Airports 

are also a central option for medium to long distance travel for most people. On the other hand, they 

are major pollutants in form of air and noise pollution. Therefore, airports represent a burden to those 

living close by. Before the Covid-19 pandemic unsettled the world, there was no sign of slowdown 

in the aviation business which led to an ever-increasing trend in air traffic in most countries. 

The ambiguity of airports can also be found in the academic literature. Nelson (2004) finds a 

negative relationship between air traffic-related noise and housing prices in his meta-analysis. Jud & 

Winkler (2006) add to this finding by suggesting a negative effect of the announced expansion of the 

Greensboro airport in North Carolina. 

In contrast to these negative effects, Brueckner (2003) finds a positive effect of employment and 

Tomskin et al. (1998) and McMillen (2004) point towards a positive effect on house prices due to 

the proximity to airports. This underpins the possible opposing effects of having an airport in your 

neighborhood.  

Focusing on only one aspect does not account for the multiple dimensions involved when 

studying airport noise. An argument that was stressed, for instance, by Espey & Lopez (2000), 
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Lipscomb (2003), Cohen & Coughlin (2008, 2009), and Ahlfeldt & Maennig (2010). Cohen and 

Coughlin (2008, 2009) and Lipscomb (2003) suggest that the negative noise effects cannot be 

countered by the positive effects of employment or proximity. 

Most studies focus on house prices instead of apartments to evaluate airport noise. One exception 

is Boes & Nuesch (2011) who uses a change in flight regulations at the airport in Zurich (Switzerland) 

to show that an increase in air traffic-related noise leads to a decline in apartment rents by 0.5% per 

decibel noise increase. Baranzini & Ramirez (2005) find a similar effect (1% per decibel increase) 

for the airport in Geneva (Switzerland). In the German context, Winke (2017) finds that the expansion 

of the Frankfurt airport resulted in a decrease of 1.7% per decibel in apartment prices. So, the results 

from the rental apartments seem to be relatively small compared to objects from the buyers’ market. 

This might be reasonable as different expectations led to the decision of buying or renting an object. 

As renter are expected to live at one location for a shorter period, they would benefit less from noise 

reductions. Buyers, on the other hand, are supposed to stay in one place for years or decades and 

therefore, they appreciate an improvement in environmental noise more. An argumentation presented 

by Ahlfeld & Maennig (2015) who evaluate the perception of homeowners and renters regarding the 

proposal to build the new airport Berlin-Brandenburg and to close the old Berlin-Tegel. 

Due to this duality pointed out in the literature, identifying causal effects needs to be given special 

attention (Breidenbach 2015). Since airports are such large infrastructure projects, their location does 

not change suddenly and even extensions are known publicly. They are planned and built over an 

extensive period and their location is known long before they are completed. This introduces the 

challenges of announcement effects and simultaneity between airport noise and housing prices. When 

the location becomes public and is not chosen randomly which is almost exclusively true, then the 

regions’ population will react to the positive and negative effects in advance. This also applies for 

the housing market.  

By focusing on the first Covid lockdown as variation source in air-related noise, we are able to 

analyze the effect of airport noise on apartment prices without being concerned about announcement 

effects. The Covid-19 crisis could not have been anticipated neither by airport operators nor by 

residents close by. 
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3. Empirical Setup & Data 

Our data base combines two main sources. We use the RWI-GEO-RED data which offers listings of 

apartments for sale made available on ImmoScout24.de. We link this data with noise contour maps 

of major airports (see Figure 6 for an example of such a map). These maps define areas around 

airports and their runways where aircraft noise is a burden to the local community. Intersecting both 

data sets allows us to determine the noise level of each apartment. 

We aim at estimating the causal effect of airport noise on apartment prices via empirical 

microeconometric methods. Thereby, the lockdown measures in the course of the Covid-19 pandemic 

serves as a natural experiment that provides exogenous variation in the exposure to aviation noise 

pollution. Due to the lockdown, the flight activity at German airports decreased, causing a substantial 

reduction in the noise pollution of apartments surrounding the airport being treated by noise for many 

years and decades before.  

This decrease is meticulously documented by the number of flight activities2 at German airports in 

the course of the years 2018 to 2021 (see Figure 1). While the two observed years before the pandemic 

show a clear seasonal pattern with peaks of about 17,000 flights per month, the first lockdown pushes 

this number down to less than 2,000 flights in April 2020. Despite to the years before, the 2020’s 

peak during vacation time in August only climaxed at about 7,000 activities (in contrast to 17,000 

before the pandemic) and still only peaks at about 11,000 flight activities with much less restrictive 

travel bans in 2021. To date, the aviation sector did not recover from the dramatic shock caused by 

the spread of Covid-19. The development of the aviation branch over the long run (and thus 

development of flight activities and noise exposure of surrounding inhabitants) is hard to foresee.  

 

 

 

 

 

 

 

2 Every take-off and landing is counted as a separate flight activity. Thus, one flight causes two activities. 
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Figure 1: Average flight activity over time 

Note: Average flight activity over time which includes starts and landings. The vertical 

line (dotted) represents the first lockdown in March 2020 which is interpreted as start 

of the pandemic in Germany. 

Source: Authors’ graph. 

The reduction of flight activity during the pandemic is also translated into a decrease of air traffic-

related noise. Figure 2 shows the average noise level3 over time across major airports. The data is 

provided by the airports themselves and is based on measuring stations located close to the airports 

and their runways. The noise level fluctuated between 54dB and 55dB in pre-Corona times and 

stabilized on an average level of 54.5dB. After the first lockdown became apparent the noise level 

dropped heavily to almost 45dB in April 2020. Afterwards the noise level recovered slightly, as did 

the flight activity, but the average of this period under treatment is 49.5dB and hence, still 5dB below 

the one of the pre-treatment period. A reduction in noise of 10dB translates into a decrease in 

perceived loudness by half (Center for Disease Control and Prevention 2019) such that a reduction 

of 5dB is a considerably large difference. The drop due to the lockdown is, therefore, not just 

documented in summary statistics but is also highly detectable by ear. So, a similar pattern as for the 

flight activity can be observed. This amplifies our argumentation that the COVID pandemic led to a 

reduction in aircraft-related noise which impacts apartment prices in the proximity to airports. 

 

3 We rely on the Day-Evening-Night level (LDEN) as noise measure. It summarizes the noise development over the entire day and 

adds an extra weight of 5dB to evening times (7 pm to 11 pm) and 10dB to night periods (11 pm to 7 am). Particular noise sensitive 

times therefore receive special attention. 
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Figure 2: Average noise level over time 

 

Note: Average noise level over time as measured by the Day-Evening-Night level 

(LDEN). The dotted line represents the first lockdown in Germany. 

Source: Authors’ graph. 

Establishing a setup that allows causal inference of one specific shock is particular tricky. The 

pandemic and the lockdown measures affected the economy and the society in various areas. Thus, 

our identification strategy needs to allege strong arguments, proving that the pandemic might have 

assailed our treatment group via other channels than the aviation noise. Simultaneously, it needs to 

be shown that aviation noise is the only effect of the pandemic that impacted the treatment group 

differently in contrast to a specific control group. We focus on a highly geographically restricted area 

with control and treatment group being in close proximity to each other to avoid differences other 

than the noise reduction. 

To emphasize this argument, we use the RWI-GEO-GRID data set to compare the control and 

treatment group in key (economic) characteristics. The RWI-GEO-GRID offers these characteristics 

(like purchasing power and population) on a one square kilometer grid for the whole of Germany. 

The data is original provided by microm GmbH and a detailed description of the data can be found 

in Breidenbach & Eilers (2018). The analysis is based on the latest year, 2019, covered in the data. 

We turn to three groups of variables: demographics (including the number of households and the 

number of people per grid cell), household composition (with the share of single, couple and family 

households), and socioeconomic factors like the household purchasing power (measured in Euro and 

per year) and the unemployment rate (in percent) in the respective grid. Further, the summary 

statistics, which can be found in Table 1, are calculated for the control and treated regions separately. 
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Treated grid cells are all those that are within the noise contour of main airports. Figure 6 shows such 

a contour map for the airport in Hamburg. The control region lies beyond the contour and is restricted 

to a buffer of five kilometers around the contour. Note that we exclude grids that are within a one-

kilometer buffer around the noise contour. The intention is to rule out grids that might be both treated 

and non-treated at the same time.   

Table 1: Comparison treatment and control group 

 

Note: Summary statistics (mean and standard deviation (SD)) to compare the control and treated 

region. The first group consists of grids beyond the noise contour and the latter is formed by grids 

within the contour. 

Source: Authors’ table. 

 

The demographics show that control and treated regions slightly differ in how many people and 

households live in the respective grid cells. This difference in means, however, does not carry over 

to the household composition. Here, both groups show similar shares of singles, couples and 

families with family households representing the least present group. The household purchasing 

power and the unemployment rate are comparable as well. 

To supplement these summary statistics, we also plot the distribution and the boxplot of each of 

these seven key characteristics using violin graphs. The results can be found in Figures 3-5. 

Figure 3 shows the distribution of the demographics, i.e., the number of households (left panel) and 

the number of people (right panel) living in the control and treated regions. While the control group 

reaches higher extrema in both variables, the shape of the distribution is similar between both 

groups. There is a large number of grids with very few households/ people in both categories with 

the majority of grids being covered up to 3,000 households or 5,000 people. 
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Figure 3: Distribution and boxplot of demographics 

 

Note: Distribution and boxplot of number of households (left panel) and number of people (right panel) for the 

control and treated regions. 

Source: Authors’ graph. 

The distributions for the household composition, displayed in Figure 4, reestablishes these 

similarities between both regions. Single households are the most common form of living 

arrangements among the three groups as the bulk of grids register an average share of 35% for single 

households. The share of couples (center panel Figure 4) is evenly distributed between zero and the 

average. The distribution tightens afterwards. As for the other two household groups, the control 

region reveals higher average values. Lastly, the share of families is, on average, the least present 

group among the household composition. 
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Figure 4: Distribution and boxplot of household composition 

 

Note: Distribution and boxplot of share of singles (left panel), share of couples (center panel) and share of families 

(right panel) for the control and treated regions. 

Source: Authors’ graph. 

Figure 5 presents the distribution of the household purchasing power and the unemployment rate. 

The purchasing power is strongly distributed around its average values in both regions 

(approximately 50,000 Euro per year). The tails are less occupied. For the unemployment rate, the 

majority of the grids have values between 0% to 5% regardless of the region. The treatment region 

seems to have more grids with higher unemployment rates leading also to the larger average shown 

in Table 1. 

Figure 5: Distribution and boxplot of socioeconomic factors 

 

Note: Distribution and boxplot of household purchasing power in Euro (left panel) and unemployment rate in percent 

(right panel) for the control and treated regions. 

Source: Authors’ graph. 
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Overall, the summary statistics and the distributions of the grid cells of the treated and control regions 

paint the picture that both groups are similar in key (economic) characteristics leading to the 

conclusion that we compare similar objects in our setting.   

Before discussing the empirical strategy, the used data should be described. We build on several 

sources to construct a data set that allows us to test the hypothesis that the reduction in aircraft noise 

during the Coronavirus pandemic is translated into a change in apartment prices close to airports. 

Further, the detailed data structure enables to conduct an empirical strategy on a small-scale regional 

level. 

The RWI-GEO-RED serves as a source for the apartment data which provides individual apartment 

prices on a monthly level. The base for this data set are offers listed on the real estate website 

ImmoScout24.de. It comes with a large list of object characteristics (like the size of the object, 

number of rooms and indicators, for instance, for having a garden or balcony). Additionally, the data 

is available at the individual object level meaning that the precise geographical location of each object 

is known. This is crucial as we connect the housing data to the nearest airport based on spatial 

information of the noise contours. 

We exclude objects with characteristic values below and above the 1 and 99 percentiles during the 

data cleaning process. The aim is to avoid unrealistic values due to fake listings and typing mistakes 

on ImmoScout24. The observation period is January 2018 to June 2021. We also drop any apartment 

offers from March 2020 as this is the month the first lockdown happened. As the apartment data is 

given on a monthly level, we would otherwise include objects that are partially treated and non-

treated at the same time. A detailed description of the apartment data can be found in Schaffner 

(2020). 

The second data source is provided by the Federal Environmental Agency (FEA 2019a) which offers 

noise maps of airports. These contour maps define zones around airports and their runways to indicate 

areas of particular exposure and they are the outcome of the European directive of the assessment 

and management of environmental noise. The resulting noise intervals typically range from 55dB to 

above 75dB. Hence, they assume that aircraft noise below 55dB does represent a special burden. 

Figure 6 shows such a map for the airport in Hamburg. The smaller the distance to the airport and its 

runways is, the higher is the noise level. Note that the stated noise levels in these maps refer to pre-

Covid times. As Figure 2 has shown, the noise level dropped massively after the first lockdown. 
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Figure 6: Noise contour map of Airport Hamburg 

 

Note: Noise contour map of the airport in Hamburg. The left panel shows the noise intervals as displayed in the original 

data. The right panel represents the noise intervals as used in the analysis. 

Source: Authors’ graph. 

Our setting is restricted to main airports in Germany. The Federal Office of Statistics (FOS) defines 

airports which have at least 150,000 flight guest units4 per year as major airports. This results in 23 

main airports in Germany for the year 2021. These airports made up 99 percent of Germany’s volume 

of the transport of passengers and goods carried through the air in 2021 (FOS 2022). Since the FEA 

does not generate maps for all of these main airports but only for those that register a minimum of 

50,000 air traffic movements, only eleven maps are available. From these eleven two are located in 

Berlin. We exclude Berlin completely from the analysis for two reasons: First, Berlin possessed two 

airports for a long time – Berlin-Tegel and Berlin-Schoenefeld. With the construction of the new 

airport, Berlin-Brandenburg, which was planned to be completed in 2011, Berlin-Tegel was supposed 

to shut down. As the building got delayed, Berlin-Tegel remained open for business leading to a 

phase of ten years in which the airport operated under uncertainty of continuation. Berlin-

Brandenburg was finished in 2020 and started operation in December. Berlin-Tegel was ultimately 

closed. Further, the new airport was merged with the existing airport Berlin-Schoenefeld such that 

the city only had one airport left. Due to this change in the city’s infrastructure and the uncertainty 

involved around the opening of Berlin-Brandenburg and the closing of Berlin-Tegel, Berlin’s airports 

4 One flight guest unit represents one passenger or 100 kilograms of cargo (FOS 2022). 
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are excluded. The second reason arises from the decision to control the development of rents in 

Berlin. In 2020, the Berlin Senate agreed to counteract the dramatic increases in the city’s rent. They 

established a rent limit (in German: Mietpreisbremse) with the aim to stabilize the rent level for the 

next five years. This regulation was lifted by the Federal Constitutional Court in 2021. So, similar to 

the airport situation, there is some uncertainty involved on the apartment market. Even though 

Berlin’s regulation focused on the rental market it might be possible that the impermanence carried 

over to the sales market. We are studying the impact of noise reductions on apartment prices. A policy 

measure like controlling rents prevents the free development on the housing market. Our estimates, 

therefore, might be compromised if Berlin would be included in the sample.     

We arrive at with nine major airports which are depicted in Figure 7. Even though only nine of the 

originally 23 major airports are included in the study, these airports cover a substantial amount of the 

air traffic. They consolidate 77.6% of passenger transport and 95.6% of the cargo among the main 

airports in 2019 (own calculation based on FOS 2022). 
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Figure 7: Locations of major airports 

 
Note: Locations of major airports included in the analysis. 

Source: Authors’ graph. 

We complement our data set by adding additional controls. First, the straight-line distance (Euclidean 

distance) to the nearest regional centers is included as covariate. The definition of these centers is 

provided by the Federal Office for Building and Planning (BBSR 2020). We use the latest available 

data from 2017. Using an accessibility model, BBSR defines municipalities of regional importance 

leading to the classification of large, medium and small centers. The aim is to ensure equal living 

conditions even for remote locations (see Friedrich et al. 2021). These centers provide a wide variety 

of services to the local community ranging from shopping opportunities, leisure activities, 

transportation infrastructure but also health and administrative services. The type of service and 

degree of specialization depends on the size of the regional center. Large regional center, for instance, 

offer education at the highest level with opportunities to visit universities, specialized libraries but 

also different kinds of museums. On the other hand, medium centers ensure a broader education 
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lacking this specialization (see Einig 2015). Further, the large and medium centers are in particular 

important locations for working and represent business centers (Friedrich et al. 2021). They can also 

be interpreted as stabilizing factor especially in remote areas (Milbert & Furkert 2020). We are, 

therefore, aiming at controlling directly for the interdependence between regions by including the 

distances to these regional centers. Additionally, commuting plays a central role for many 

households, which in turn impacts housing prices and by adding these variables to the analysis we 

directly control for this relationship. 

As second additional control variable, we implement the Euclidean distance to the airport building 

itself in our model. Airports cannot only be interpreted as disamenity due to noise and air pollution 

but they are also a working place either for people directly working at the airport or for suppliers 

located close by. They also offer travelling opportunities for medium to long distance travels. Without 

a covariate capturing this positive effect our estimates would be biased (see also literature discussed 

at the beginning). The geographical information is provided by FEA (2021) which offers a data set 

with all worldwide registered airports on openflights.org. This can be then linked to the geographical 

locations of the apartments. 

We further add the Euclidean distance to major railroads to the regression model. The data is also 

provided by the FEA (2018) for the year 2017 and consists of all railroads that register at least 30,000 

train movements per year. Similarly, we use the same data source to include the distance to major 

industry plants in agglomeration areas (FEA 2019b). Adding these additional noise sources allows 

us to control for their negative noise effect on apartment prices. Therefore, the estimates presented 

later reflect the aircraft-related noise effect. Note that all included distances are calculated in 

kilometers. 

Table 2 provides the summary statistics for the object characteristics and the discussed additional 

control variables. It is divided into treated objects, i.e., those that are within the noise contour and 

therefore, exposed to aircraft noise, and control objects which are not extensively affected by air 

traffic-related noise. The table also indicates the summary statistics before and after the first 

lockdown (March 2020). 
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Table 2: Summary statistics 

 

Note: Mean and standard deviation (in parenthesis) of the used variables for treated objects (i.e., within 

the airport noise contour) and control objects (beyond noise contour) and before and after the 

lockdown (March 2020). 

Source: Authors’ table. 
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We use the spatial information of the noise structure around the main airports and link it to the 

location of the apartments. Doing this allows us to define the treated group by those objects that are 

situated within one of the rings of the contour maps. The original noise contour data typically consists 

of five rings (as illustrated in left panel of Figure 6) but due to the low number of observations within 

the innermost rings, we define instead two noise intervals: one above 55dB and one above 60dB5. 

The right panel of Figure 6 displays this classification graphically. This difference in noise intensity 

is later used in one of the heterogeneity analyses. The control group is then formed by apartments 

beyond the outermost ring but within a five-kilometer buffer around the contour shape. We exclude 

control objects within a one-kilometer buffer around the noise contour. This neutral zone ensures that 

there are no objects in the control group which are partially treated by air traffic-related noise. 

Otherwise, it would blur our estimated treatment effect. Note that we show this in one of the 

robustness checks where we explicitly include objects of the neutral zone in the sample. 

This approach leads to the following number of observations for treated objects. Table 3 displays 

these by noise ring but also for the periods before and after the lockdown.  

Table 3: Number of treated objects 

 

Note: Number of objects within the noise rings of the airports (i.e., treated 

objects) before and after the lockdown (starting March 2020). Ring 1 

indicates areas with low noise (above 55dB) and Ring 2 reflects regions with 

high noise levels (above 60dB before the pandemic). 

Source: Authors’ table. 

As we are estimating a two-way fixed effects model with a difference-in-difference layout, the 

development of prices before the shock occurs is a central issue of the identification. Figure 8 shows 

the average price per square meter (in Euro) by quarter. Three observations can be made from this 

figure: First, both the control and treatment group follow an upward trend in prices. At the beginning 

of our observation period, prices ranged between 3,000 and 3,500 €/m2 for treated objects and just 

below 4,000 €/m2 for control objects. In the second quarter of 2021 prices have risen to around 4,500 

€/m2 for treated and to 5,500 €/m2 for control objects. This is an extensive increase in prices over a 

5 Note that these noise levels refer to pre-Covid times (prior March 2020). Following the pattern presented in Figure 2, the actual 

noise during the pandemic is much lower. 
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relatively short period of time. The second observation is that the treatment region performs worse 

in price than the control group at any given time. The figure suggests that objects closer to airports 

which are exposed to higher noise levels can be sold, on average, for less. Lastly, the price curve of 

the objects within the noise contour (treated) looks relatively bumpy compared to the control region. 

This results from the lower number of observations in the treatment group as housing data and 

average price fluctuates over time quite strongly. 

Note that Figure 8 might hint at pre-Covid effects in prices in the quarters Q4 2019 and Q1 2020 but 

the figure only shows explorative statistics without controlling, for instance, for object 

characteristics. Our robustness checks suggest that when controlling for the discussed covariates 

there are no effects prior to the first lockdown. 

Figure 8: Price developments by quarters 

 

Note: Prices per square meter by quarter for treated objects (within the noise 

contour and exposed to at least 55dB of air traffic noise) and control objects 

(beyond noise contour and a noise level below 55dB). The vertical line 

represents the first Coronavirus lockdown (March 2020). 

Source: Authors’ graph. 
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For the empirical strategy, we estimate a two-way fixed effects model of a hedonic price function. 

As originally laid out by Rosen (1974), the hedonic model follows the idea that the apartment price 

can be described as the combination of the apartment’s characteristics and its surroundings. Our 

model takes on the following form: 

𝑦𝑖𝑡𝑔 = 𝛽𝑿𝑖𝑡𝑔 + 𝛿𝑁𝑜𝑖𝑠𝑒𝐶𝑜𝑛𝑡𝑜𝑢𝑟𝑖𝑔 + 𝛾(1𝑠𝑡𝐿𝑜𝑐𝑘𝑑𝑜𝑤𝑛𝑡 x 𝑁𝑜𝑖𝑠𝑒𝐶𝑜𝑛𝑡𝑜𝑢𝑟𝑖𝑔) + 𝑀𝑜𝑛𝑡ℎ𝑡 + 𝐺𝑟𝑖𝑑𝑔 + 𝜖𝑖𝑡𝑔 

The dependent variable, yitg, represents the logarithm of the offering price apartment i, in month t and 

grid cell g. X summarizes the control variables including the object characteristics, the distances to 

large, medium and small regional center, and the distance to the airports themselves, the distance to 

railroads and the distance to industrial plants. NoiseContour is the treatment indicator whether or not 

an object lies within the noise contour of a major airport which means that the object is at least 

exposed to an air traffic-related noise level of 55dB. So, for the control objects, the variable takes on 

the value of one if this is the case and zero otherwise. These control objects are restricted to a 

maximum distance of five kilometers from the border of the noise contour. Further, all control objects 

within a one-kilometer buffer around the noise contour are excluded. This neutral zone drops all 

objects that might be treated by aircraft-related noise because they are located just at the border of 

the noise contour. The strategy gives us a clear cut between treated and non-treated apartments. 

Neglecting this issue would dilute our treatment effect. We relax this setting in one of the robustness 

checks and incorporate the neutral zone in the sample.  

Treated objects should benefit from the reduction in flight activity during the pandemic. On the other 

hand, control objects beyond the noise contour are not exposed to aircraft-related noise extensively, 

as their noise level ranges below 55dB. So, they are not supposed to benefit from the drop in noise 

level due to the Coronavirus pandemic. 

The variable 1st Lockdown is a dummy variable which is equal to one for periods after March 2020 

and zero prior to that. The first lockdown is used here because of its massive impact on the flight 

activity in Germany (see Figure 1). Even though Covid-19 cases were registered before this month, 

the aviation industry took a severe shock following the restrictive travelling rules due to the 

lockdown. To estimate the effect of the resulting noise reduction after the lockdown was in place, we 

implement the interaction term 1st Lockdown x NoiseContour which combines the lockdown dummy 

and the previously described noise indicator. Therefore, the coefficient γ is our main coefficient of 

interest and it gives us the additional effect on apartment prices for objects closer to the airport (i.e., 
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within the noise contour) compared to those objects that are further away after the first lockdown 

(March 2020).  It is an evaluation of the noise reduction due to the decrease in flight activity caused 

by the Covid-19 pandemic. We are able to identify this effect because of the regionally restricted 

area such that we can assume that the control and treatment group are comparable and affected by all 

other factors equally beside the noise level reduction. 

To completement this small scale setting even further, we introduce regional and time fixed effects 

on the grid and monthly level to control for invariant factors. The regression is performed with robust 

standard errors. 

 

4. Results 

The presentation of our results is structured as follows. First, we exploit our model in the baseline 

specification (model 1) for the whole set of observed airports and for the full period of the pandemic. 

We further shed light on the heterogeneity of the basic findings. To test the robustness of our results, 

we finally provide a set of robustness checks.  

Table 4: Baseline results 

 

Note: Baseline results with 1st Lockdown indicating periods after March 2020 

and NoiseContour being equal to one for objects within the noise contour of 

major airports. 

Source: Authors’ table. 
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 Our baseline results support our hypothesis. The unexpected but substantial reduction of noise 

pollution positively affected those flats, exposed to aviation noise. After the lockdown (causing the 

reduction of noise), the offer price for those flats increased by 2.8% in contrast to the flats in the 

control group which are not exposed to noise but also located close to the respective airports. The 

effect is highly significant at the 1%-level using robust standard errors on the grid level. 

 

Heterogeneous Effects 

Time intervals 

We study the effect for different stages of the pandemic. This time split especially follows the 

hypothesis that the perception on the development of future noise pollution have changed 

substantially during the course of the pandemic. While the initial German lockdown for six weeks in 

spring 2020 gave hope that the pandemic will affect the society hard but very shortly, this perception 

was more and more outdated during the summer of 2020. Although Germany managed to keep 

infection rates very low, the outbreaks in other countries clearly hint to the point that Covid-19 will 

not be over after a short lockdown. Additionally, the aviation market gave strong signals for 

substantial changes. On the demand side travel restrictions and the rise of virtual meetings indicate 

strong changes. Additionally, the bankruptcy of the airports Frankfurt-Hahn and Paderborn as well 

as the necessary billions of financial aids to Lufthansa (as largest airline in Germany) indicate similar 

disrupt shocks on the supply side. 

To analyze different effect during the time intervals of the pandemic, we split the post-lockdown 

period into intervals of three months. The first interval (April to May 2020) consists only of two 

months as March 2020 is excluded from the study to avoid any confusion between treated and non-

treated apartments. The period indicators are then interacted with the dummy stating proximity to 

airports (NoiseContour). Table 5 reports the results of these interaction terms. 
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Table 5: Heterogeneity Effect – Time intervals 

 

Note: Baseline regression for different periods of the pandemic. NoiseContour 

indicates treated objects (i.e., within the noise contour). 

Source: Authors’ table 

To analyze different effect during the time intervals of the pandemic, we split the post-lockdown 

period into intervals of three months. The first interval (April to May 2020) consists only of two 

months as March 2020 is excluded from the study to avoid any confusion between treated and non-

treated apartments. The period indicators are then interacted with the dummy stating proximity to 

airports (NoiseContour). Table 5 reports the results of these interaction terms. 

The results from the time split clearly reveal temporal dynamics in the effects on housing prices. As 

expected, the initial lockdown period (April-May 2020) did not cause any effects on apartment prices. 

This may be caused by the general perception that the measures against Covid-19 will have a 

foreseeable end. The effect peaks during the summer period from June to September 2020 where 

many national restrictions were lifted but air-travelling still did not recover to the earlier level. Here 

we see a price effect of 2.8% which is strongly significant at the 1%-level.  
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Starting in 2021, the effect even increases to 4% (in the period January to March) and nearly 5% 

between April and June. Although, the number of flights was recovering at this time (to a lower level 

than before the pandemic), we observe the strongest effect at the end of the observed period. This 

may be caused by the perception of residents (and people moving into such exposed neighborhoods) 

that the aviation market will not fully recover.  

Heterogeneity Effect – Noise levels 

We exploit the richness of our data in this heterogeneity test by dividing the noise contour into two 

rings. The first ring sums up noise levels between 55 and 59dB. The second ring assumes a stronger 

noise intensity and registers noise levels above 60dB in pre-Corona times. A graphical representation 

of these rings can be found in Figure 6 (right panel). Having these classifications, allows us to identify 

the treatment effect of the first lockdown for a milder (ring 1) and stronger exposure (ring 2) 

compared to objects that are supposed to be not extensively affected by air-traffic related noise. The 

results can be found in Table 6. 

Table 6: Heterogeneity Effect – Noise Level 

 

Note: Heterogeneity analysis assuming different noise intensities with Ring 1 

being an indicator for living in areas with a noise level of 55 to 59dB (low 

noise before the pandemic) and Ring 2 identifies regions of noise levels above 

60dB (high noise). 

Source: Authors’ table. 
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As expected, the effect is substantially larger for those apartments with the higher noise exposure 

(4.4%) in contrast to the effect of 2.5% for the lighter affected apartments. Both effects are highly 

significant at the 1% level. The distribution of the coefficients with a stronger effect for highly 

affected apartment is reasonable.  
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Heterogeneity Effect – Time intervals and noise levels 

The last heterogeneity test focuses on the combination of the first two by intersecting the time and 

spatial dimensions. Thus, the effect of different time intervals of the pandemic and of different 

treatment intensities are studied. The results are depicted in Table 7.  

Table 7: Heterogeneity Effect – Time intervals and noise levels 

 

Note: Baseline regression with interaction between time and spatial 

dimensions. Period variables indicating a specific time interval of the 
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pandemic and Ring 1 and Ring 2 reflect areas of low (above 55dB) and high 

(60dB) noise levels. 

Source: Authors’ table. 

Basically, this setup combines the prior temporal and spatial heterogeneity analyses. This similarity 

is also reflected in the results. The results from the prior analyses are also reflected in these results. 

The effects get stronger for the later periods. Again, the locations with higher noise levels are 

affected stronger than those with lower exposure rates.  

 

Robustness – Pre-trends 

Our study uses a difference-in-difference like setting to identify the effect of noise reductions during 

the pandemic on apartment prices. It is crucial to assume in this kind of setting that the treated and 

control objects behave similarly prior to the event (here the first lockdown in March 2020) such that 

the effect can be attributed to the start of the event. There should be no (significant) effect prior to 

this leading to the conclusion that the event causes the difference between treated and non-treated. 

Figure 8 already showed graphical evidence for this by plotting the development of prices over time. 

To underpin the explorative analysis, we conduct to pretend analyses. First, we restrict our sample to 

the pre-lockdown period, i.e., our new observation period ranges from January 2018 to February 

2020. The original lockdown is then shifted and we assume it was enacted in March 2019 – one year 

before the actual lockdown. The expected result would be that the interaction with the NoiseContour 

variables shows no significant effect and thus, supporting the argument that the actual lockdown 

drives the results. The regression output can be found in Table 8 column (1). 

To intensify this argumentation even more, we split the pre-lockdown period into two-time intervals 

– January 2018 to January 2019 (labelled as t-2) and February 2019 to February 2020 (labelled as t-

1). The treatment period is left unchanged and is set to the months after the lockdown (April 2020 to 

June 2021). March 2020, the month the implementation of the lockdown, functions as reference 

period in this setting. Again, the expectation is that pre-Corona periods show no significant effects 

when interacted with the NoiseContour dummy but the post-period indicator reports an effect. The 

results are shown in Table 8 column (2). 
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The placebo test gives no hint that the diff-in-diff setup is plagued by pre-trends of the treatment (or 

control) group. In the pre-treatment periods (t-1 and t-2) there are no significant effects found in the 

estimations. The coefficient for the implemented placebo lockdown also remains insignificant.  

 

 

Table 8: Pre-trend results 

 

Note: Column (1) shows the results for assuming a placebo lockdown in March 

2019 (one year before the actual lockdown). Column (2) divides the pre-

lockdown period into two intervals (t-2: January 2018-January 2019, t-1: 

February 2019-February 2020). The post-lockdown period is unchanged and 

March 2020 refers to the reference period (= t). NoiseContour indicates treated 

objects. 

Source: Authors’ table. 
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Figure 9: Effect size over time 

 

Note: Graphical representation of the regression output shown in Table 8 

column (2). Point estimates (dots) and their 90% confidence intervals 

(vertical lines) of the pre-trend analysis. t-2 represents months between 

January 2018 to January 2019 and t-1 months between February 2019 and 

February 2020. t+1 is the post-lockdown period (April 2020 to June 2021). 

March 2020 functions as reference period (= t). 

Source: Authors’ graph. 
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Robustness – Leave-one-out-Estimation 

To test the robustness of our baseline result, we conduct a leave-one-out estimation such that each of 

the nine airports is dropped from the sample once. Otherwise, the baseline setting is unchanged, i.e., 

the variable of interest is the interaction between the first lockdown in Germany (March 2020) and 

the indicator variable for being resident within the noise contour of a major airport. 

Table 9: Leave-one-out estimation 

 

Note: Repeated baseline regression with one airport left out at the time where Duesseldorf (DUS) is excluded in column 

(1), Frankfurt (FRA) in column (2), Hamburg (HAM) in column (3), Hannover in column (4), Leipzig (LEJ) in column 

(5), Munich (MUC) in column (6), Stuttgart (STR) in column (7), Cologne (CGN) in column (8), and Nuremberg (NUE) 

in column (9). 1st Lockdown indicates periods after March 2020 and NoiseContour determines treated objects within the 

noise contour. 

Source: Authors’ table. 

 

Basically, the lockdown effect remains unchanged. In most cases, the effect varies between 2.4% 

and 3.4%. Only Frankfurt airport has a significant impact on the overall results. Once, Frankfurt is 

not implemented in the regression, the effect turns out to be insignificant.  
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Robustness – Including 1km buffer  

A neutral zone was defined in all of the previous analyses. Control apartments that are located within 

one kilometer around the noise contour were excluded. The intention was to establish a clear cut 

between the treatment and control group without including objects in the control group that might be 

partially treated due to their mere close proximity to the noise contour. Otherwise, the treatment 

effect would be diluted and is expected to be smaller than with the exclusion of the neutral zone. To 

test this hypothesis, we reverse the previous setting and include the neutral zones in this last 

robustness check. The baseline regression is then repeated. The results are shown in following table. 

 

Table 10: Including a 1km buffer 

 

Note: Repeated baseline regression with the inclusion of observations within 

a one-kilometer buffer around the noise contour. 1st Lockdown indicates 

periods after March 2020 and NoiseContour reflects treated objects within 

the noise contour. 

Source: Authors’ table. 
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5. Conclusion 

Identifying the effect of airport noise is a difficult task to undertake. Airports are large infrastructure 

projects which are publicly known long before their construction is completed. This evokes the issue 

of announcement effects. To bypass this challenge, we exploit the first Covid lockdown in March 

2020 in Germany as source of variation in air traffic and aircraft-related noise. Due to travel bans and 

closed borders, the aviation sector took a hard hit leading to a strong decline in flight activity. We 

use this change and evaluate aircraft noise by applying a two-way fixed effects model.  

The study builds on a granular data set which takes precisely geographically located apartments and 

connects them to noise contour maps of German airports. We also control directly for an extensive 

list of covariates such that the noise effect can be identified. 

We are able to show a positive effect on apartment prices once the unexpected event of silence took 

place. Therefore, our study also contributes to the literature in the way that we show an absence of 

disamenities can improve living standards. 

The baseline results suggest a price increase of around 3% after the lockdown was in place. The 

heterogeneity analysis reveals an even larger effect for later stages of the pandemic in 2021 (around 

5%) and for those objects that are affected by higher noise levels before the pandemic (approximately 

8%). This indicates a catching up process for treated apartments once the burden of extensive noise 

is relaxed.  

We also conduct several robustness checks to validate our findings. Especially, the pre-trend analysis, 

which identifies no significant effect in pre-Covid times, support our results and the hypothesis that 

the pandemic improved prices of close by apartments due to its effect on aircraft noise. 
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