
- 1 - 
 

Winners in the urban champions league 
 - A performance assessment of Japanese cities by means of dynamic and super-efficient DEA 

 
Soushi Suzukia and Peter Nijkampb,c 

 

 

aHokkai-Gakuen University, Department of Life Science and Technology, 1-1, South26 West 11, Chuo-ku Sapporo 
064-0926, Japan 
E-mail: soushi-s@lst.hokkai-s-u.ac.jp 

b Tinbergen Institute, Gustav Mahlerplein 117, 1082 MS, Amsterdam, The Netherlands 
cA.Mickiewicz University, Poznan, Poland 
E-mail: pnijkamp1@gmail..com 

 
 
Keywords   Data Envelopment Analysis (DEA); Super Efficiency; Distance Friction Minimisation (DFM); 

Target-oriented (TO) model; Dynamic DEA model ; performance assessment; Japanese cities 
 
 
JEL: R11, O18 
 
 
Abstract 
This paper aims to provide an advanced dynamic assessment methodology for city performance strategies, based 
on an extended Data Envelopment Analysis (DEA). The use of this novel efficiency-improving approach based on 
DEA originates from the earlier developed, so-called Distance Friction Minimisation (DFM) method. To design a 
feasible and realistic improvement strategy for low-efficiency Decision-Making Units (DMUs), we introduce a 
Target-Oriented (TO) DFM model on top of a Super-Efficiency model, in order to generate an appropriate 
efficiency-improving projection model. The standard TO approach specifies a target-efficiency score (TES) for 
inefficient DMUs. This approach is able to compute an input reduction value and an output increase value in order 
to achieve a desired TES. To develop a dynamic DEA perspective, we create next a new model from a blend of the 
TO-DFM approach and a Time-Series (TS) approach which incorporates a multi-temporal time horizon and a 
stepwise target score to achieve a final target efficiency score so as to generate a more appropriate efficiency-
improving DEA projection. This new model is able to incorporate a catch-up effect in the efficiency projection. 
However, the regular TS approach assumes that the efficiency frontier is fixed over any time period. However, in 
reality, efficiency frontiers vary from year to year. That is to say, the TS approach is not able to incorporate a frontier 
shift effect in setting the overall target improvement level. Therefore, it is necessary to develop a more realistic 
efficiency improvement projection which includes a dynamic system of target-settings to achieve a target 
improvement level so as to programme more realistic policy initiatives. In the present paper we develop a new 
multi-period model from a blend of the TO-DFM model and a dynamic TS decision approach. The above-
mentioned Dynamic TO-DFM model will be applied to and tested for a multi-dimensional efficiency assessment 
of several large Japanese cities. In this study, due to comparative data limitations, we consider two inputs (population 
and city budget) and two outputs (GDP and tax revenues). Based on these items, this study assesses the relative 
economic performance of 16 Japanese big cities (i.e., “government-ordinance-designated cities”) by means of the 
above described, extended super-efficient DEA model. Finally, we provide an efficiency improvement programme 
based on the Dynamic TO-DFM model for inefficient cites.  
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1. Introduction 
 
Japan -like many other Asian countries- shows a high degree of spatial and demographic dynamics. Compared to 
other nations in Asia, the Japanese economy is characterized by quite same turbulence in the past decades. We will 
briefly illustrate the dynamics in the Asian countries based on population changes as presented in Figure 1. We have 
chosen this demographic information, as this is a relatively easy variable to predict over a relatively long time period. 

 
Figure 1 Population change in Asia (1000 persons) Source: UN, World Population Prospects: 2012 Revision 
 
From Figure 1, it can easily be seen that Japan is already in a transition process in wards a depopulating society as a 
result of the structural ageing process. Korea, Thailand, and China will also become depopulating nations in the 
period 2020 to 2040, while other countries will sooner or later also show a downward trend in the rate of population 
growth (for more detail, see Suzuki and Nijkamp 2017b). It should be added that the spatial distribution of people 
– despite declining growth rates of the population- is not showing a stable pattern over the past decades. On the 
contrary, we observe that an increasing share of people lives in urban areas (the so-called ‘new urban world’, see 
Kourtit 2015). Thus, population decline and urbanization rise appear to become two parallel phenomena. 
Consequently, the position of cities is becoming more strategic in this dynamic societal development.  
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We live nowadays in the ‘urban century’.  The role of urban systems is becoming more and more dominant. The 
megatrend of population concentration in urban areas does clearly not come to a standstill, even not in a 
depopulating nation like Japan. These unprecedented increases in urban population in Japan - and all over the world 
- have close links with the magnet position and the economic performance of cities. And therefore, it is important to 
assess the real performance of urban agglomeration. 

A standard tool which is used to judge the performance or efficiency among different actors is Data Envelopment 
Analysis (DEA), proposed by Charnes, Cooper and Rhodes (1978).  Over the past decades, this has become an 
established quantitative assessment method in the evaluation literature. Seiford (2005) mentions that there are at 
least 2800 published articles on DEA in various management and planning fields, but nowadays this number is 
already much higher. The DEA methodology has also expanded its scope towards other disciplines. Currently, in 
the urban performance context, there are several assessment studies that have applied DEA models to measure 
economic efficiency among cities, which are regarded as so-called Decision Making Units (DMUs) in the DEA 
jargon.  

Various introductions into DEA and applications to city efficiency rankings can be found in Borger et al. (1996), 
Worthington et al. (2000), Afonso et al. (2006), Suzuki et al. (2008), Nijkamp et al. (2009), Kourtit et al. (2013) and 
Suzuki and Nijkamp (2017b). This large number of applied studies shows that an operational analysis of city 
efficiency in a competitive environment is an important, but also intriguing research topic in the urban and regional 
science literature. DEA has demonstrated its great potential in providing a quantitative basis for comparative and 
benchmark studies in efficiency or productivity analysis. 

It should be noted that DEA was originally developed to analyse the relative efficiency of a DMU by constructing 
a piecewise linear production frontier, and projecting the performance of each DMU onto that frontier. A DMU that 
is located on the frontier is efficient, whereas a DMU that is below the frontier is inefficient. The idea of DEA is that 
an inefficient DMU can become efficient by reducing its inputs, or by increasing its outputs. In the standard DEA 
approach, this is achieved by a uniform reduction in all inputs (or a uniform increase in all outputs). However, in 
principle, there are an infinite number of possible improvements that could be implemented in order to reach the 
efficiency frontier, and, hence, there are many solution trajectories, if a DMU wants to enhance its efficiency.  

It is noteworthy that, in the past few decades, the existence of many possible efficiency improvement solutions 
has prompted a rich literature on the methodological integration of Multiple Objective Linear Programming 
(MOLP) and DEA models. Here, we provide a concise overview (see also Suzuki et al., 2010). One of the first 
contributions was made by Golany (1988), who proposed an interactive MOLP procedure, which aimed to 
generate a set of efficient points for a DMU. This model allows a decision maker to select the preferred set of output 
levels, given the input levels. Later on Thanassoulis and Dyson (1992), Joro et al. (1998), Halme et al. (1999), Frei 
et al. (1999), Korhonen and Siljamäki (2002), Korhonen et al. (2003), Silva et al. (2003), Lins et al. (2004), Washio 
et al. (2012), and Yang and Morita (2013) also proposed complementary efficiency improvement solutions. In 
particular, Suzuki et al. (2010) proposed a new projection model, called a Distance Friction Minimisation (DFM) 
model. In this approach, a generalised distance indicator is employed to assist a DMU to improve its efficiency by 
a movement towards the efficiency frontier surface. Of course, the direction of the efficiency improvement depends 
on the input/output data characteristics of the DMU. It is then plausible to define the projection functions for the 
minimisation of distance by using a Euclidean distance in weighted space. As mentioned earlier, a suitable form of 
multidimensional projection functions that serves to improve efficiency is given by a Multiple Objective Quadratic 
Programming (MOQP) model, which aims to minimise the aggregated input reductions, as well as the aggregated 
output increases. Thus, the DFM approach can generate a new contribution to efficiency enhancement problems in 
decision analysis by employing a weighted Euclidean projection function, and, at the same time, it might address 
both an input reduction and output increase. 

The DFM model is able to calculate either an optimal input reduction value or an optimal output increase value 
in order to reach an efficiency score of 1.0, even though in reality this might be hard to reach for low-efficiency 
DMUs. Recently, Suzuki et al. (2015) presented a newly developed adjusted DEA model, which emerged from a 
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blend of the DFM and the target-oriented (TO) approach based on a Super-Efficiency model, in order to generate 
an appropriate efficiency-improving projection model. The TO approach specifies a target-efficiency score (TES) 
for inefficient DMUs. This approach can compute both an input reduction value and an output increase value in 
order to achieve a TES.  Recently, Suzuki et al. (2017a) also developed a new model from a blend of the TO-DFM 
and a Time-Series (TS) approach which incorporates a multi-temporal time horizon and a stepwise target score to 
achieve a final target efficiency score in order to generate a more appropriate efficiency-improving projection. This 
model is also able to incorporate a catch-up effect in the efficiency projection.  

However, this TS approach assumes that the efficiency frontier is fixed at any time period. But, in reality, 
efficiency frontiers may vary -and do vary- from year to year. That is to say, the earlier TS approach does not 
incorporate a frontier shift effect in setting the target improvement level. Therefore, it is desirable to develop a more 
realistic efficiency improvement projection which includes a dynamic system of target-settings to achieve a target 
improvement level in order to programme more realistic future policy initiatives.  

The aim of this paper is now to develop a new multi-period DEA model from a blend of the TO-DFM approach 
and a dynamic TS approach which incorporates a flexible multi-period perspective and a stepwise target score to 
achieve a final target efficiency result in order to programme a more appropriate efficiency-improving projection. 
The above-mentioned Dynamic TO-DFM model will be applied to a broad efficiency assessment of Japanese cities.  
    The paper is organised as follows. Section 2 summarise briefly our DFM methodology, while Section 3 presents 
the newly developed model, which is a Dynamic TS model in the framework of a TO-DFM model. Next, Section 
4 presents an application of this new methodology to an efficiency study on the economic performance of Japanese 
cities. Finally, Section 5 draws some conclusions. 
 
 
2. Outline of the Distance Friction Minimisation (DFM) approach 
 

An efficiency-improvement solution in the original DEA model (abbreviated hereafter as the CCR-input model; 
see Appendix A1) requires that the input values are reduced radially by a uniform ratio  (  =OD’/OD in Figure 
A1).  

The (v*, u*) values obtained as an optimal solution for formula (A.1) result in a set of optimal weights for DMUk. 
Hence, (v*, u*) is the set of most favourable weights for DMUk , measured on a ratio scale. Thus, vm

* is the optimal 
weight for input item m, and its magnitude expresses how much in relative terms the item is contributing to 
efficiency. Similarly, us

* does the same for output item s. These values show not only which items contribute to the 
performance of DMUk, but also the extent to which they do so. In other words, it is possible to express the distance 
frictions (or alternatively, the potential increases) in improvement projections. 

We use the optimal weights us
* and vm

* from (A.1), and then describe the efficiency improvement projection 
model (see also Suzuki et al. (2010)). In this approach, a generalised distance indicator is employed to assist a DMU 
in improving its efficiency by a movement towards the efficiency frontier surface. Of course, the direction of the 
efficiency improvement depends on the input/output data characteristics of the DMU. It is now appropriate to define 
the projection functions for the minimisation of distance by using a Euclidean distance in weighted space. As 
mentioned earlier, a suitable form of multidimensional projection functions that serves to improve efficiency is given 
by a Multiple Objective Quadratic Programming (MOQP) model, which aims to minimise the aggregated input 
reductions, as well as the aggregated output increases. Thus, the DFM approach can generate a new contribution to 
efficiency enhancement problems in decision analysis by employing a weighted Euclidean projection function, and, 
at the same time, it might address both an input reduction and output increase. Here, we only briefly describe the 
various steps (for more details, we refer to Suzuki and Nijkamp 2017b).  

First, the distance function Frx and Fry is specified by means of (2.1) and (2.2), which are defined by the Euclidean 

distance. Next, the following MOQP is solved by using x
mkd (a reduction of distance for xmk) and y

skd (an increase 
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of distance for ysk) as variables: 
 

         min    
m

x
mkmmkm

x dvxvFr
2

       (2.1) 

 min    
s

y
skssks

y duyuFr
2

     (2.2) 

       s.t.      





 


1

2

m

x
mkmkm dxv                                     (2.3) 

  





 


1

2

s

y
sksks dyu         (2.4) 

0 x
mkmk dx         (2.5) 

0x
mkd          (2.6) 

0y
skd ,         (2.7) 

 

where mkx  is the amount of input item m for any arbitrary inefficient DMUk, while sky is the amount of output 

item s for any arbitrary inefficient DMUk. The constraint functions (2.3) and (2.4) refer to the target values of input 
reduction and output augmentation.  

It is now possible to determine each optimal distance x
mkd  and y

skd  by using the MOQP model (2.1) - (2.7). 

The distance minimisation solution for an inefficient DMUk can be expressed by means of formulas (2.8) and (2.9): 
 

  x
mkmkmk dxx ;                                             (2.8) 

  y
sksksk dyy .        (2.9) 

   
By means of the DFM model described above, it is possible to present a new efficiency-improvement solution 

based on the standard CCR projection. This means an increase in new options for efficiency-improvement solutions 
in DEA. The main advantage of the DFM model is that it yields an outcome on the efficient frontier that is as close 
as possible to the DMU’s input and output profile (see Figure 2).  This approach has functioned as an ingredient for 
many recent DEA studies by the authors of this paper. 
 



- 6 - 
 

 

Figure 2 Degree of improvement of the DFM and the CCR projection in weighted input space 
 
3. Design of a Dynamic TO-DFM model 

The Dynamic TO-DFM model designed in the present study comprises the following steps:  
 Step 1. The final Target Efficiency Score during the target achievement period P in period p = 0 (i.e., the origin 

period) for DMUk (hereafter FTESP) is set arbitrarily by the decision– or policy–maker. The 
improvement projections are divided into two types, depending on the score of the FTESP as follows: 

 θ0*<FTESP<1.000; Non-Attainment DFM projection (score does not reach the efficiency     

frontier). This may make sense for DMUs that are far below the efficiency frontier; 

 FTES P
 = 1.000; Normal DFM projection (solution just reaches the efficiency frontier); 

where *
0  is an efficiency score for DMUk in period 0. 

 
Step 2. The Total Efficiency Gap at the target achievement time P for DMUk in period 0 (hereafter TEG0

P) is 
calculated by formula (3.1): 

 *
00  PP FTESTEG .      (3.1) 

              The Target Efficiency Score at any arbitrary period t (t=1, 2, …, P) for DMUk in period 0 (hereafter TES0
t) 

is calculated by formula (3.2): 

.0
*
00

Pt TEG
P

t
TES  

                                                                                              

(3.2) 

The FTESP, TEG0
P and TES0

t values at an arbitrary period t (t=1, 2, …, P) in period 0 are illustrated in 
Figure 3. 

Step 3. Solve   

   
   *

0

*
00

*
0

*
0*
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0

0
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11
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
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
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t
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TES .    (3.3) 

 
Then, we get MP0

t, which is a Magnification Parameter of TES0
t. MP0

t assumes an intermediate role by adjusting 
the input reduction target and the output increase target in formulas (3.7) and (3.8) in order to ensure an alignment 
of the TES0

 t and DFM projection score for DMUk. 
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Figure 3 Illustration of the FTESP, TEG0

P and TES0
t at arbitrary period t in period 0 

 

 
Figure 4 Illustration of the FTESP, TEGp

P and TESp
t at arbitrary period t (in the case of period 1) 

 
Step 4. Solve the Dynamic TO-DFM model using formulas (3.4)–(3.11); then, an optimal input reduction value 

and output increase value to reach a TES0
t can be calculated as follows: 
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min      
s

yt
skssks

y duyuFr
2

;                                   (3.5) 

      s.t.    
 
 





 



m

xt
mkmkm

s
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sksks

t

dxv

dyu
TES0 ;      (3.6) 

      *
0

*
00 1

1
11





  t

m
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mkmkm MPdxv ;  (3.7) 

     *
0

*
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1





  t

s
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sksks MPdyu ;          (3.8) 

0 xt
mkmk dx ;      (3.9) 

0xt
mkd ;        (3.10) 

0yt
skd .        (3.11) 

 
Step.3 and Step.4  are repeated computations using the values t = 1, 2, …, P.  
 
Step.5 Now we consider to make a shift to period p (p=1, 2, …, P.). 
             Calculate an efficiency score for DMUk in period p based on a dataset for all DMUs in period p. We then 

get 
p for DMUk. 

 
The ‘Total Efficiency Gap’ at the target achievement time P for DMUk in period p (hereafter TEGp

P) is 
calculated by formula (3.12): 
 

 *
p

PP
p FTESTEG  .      (3.12) 

               
The Target Efficiency Score at an arbitrary period t (t=1, 2, …, P) for DMUk in period p (hereafter TESp

t) 
is calculated by formula (3.13): 
 

.
)(

)(* P
pp

t
p TEG

pP

pt
TES 




 

     

(3.13) 

 
TEGp

P and TESp
t at an arbitrary time t (t=1, 2, …, P) in period p are illustrated in Figure 4 (this is an example in 

the case of p=1). 

From Figure 4, we notice that  ߠ଴
∗ ൅ ଵ

௉
ൈܶܩܧ଴

௉ ് ଵߠ
∗ in t (and period p) = 1. This means that there is a gap 

between the target improvement efficiency score at period 1 in period 0 (ߠ଴
∗ ൅ ଵ

௉
ൈܶܩܧ଴

௉) and the real improved 

efficiency score in period 1 (ߠଵ
∗ ). Of course, this might be in accordance with these values, but this may be 
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considered as an extremely rare case. Therefore, we need to adjust a target efficiency score incorporating these gaps 
to set an adjusted target in the next period in order to reach a Final Target Efficiency Score in the target achievement 
period P. This adjustment is described here as a difference between TEG1

P and TEG0
P. 

We also notice that ߠଵ
∗ െ ଴ߠ

∗ includes both a catch-up effect and a frontier-shift effect. That is to say, our new 
Dynamic TO-DFM model can incorporate these two effects in the efficiency improvement projection. 

Step 6. Solve   

   
   *

*

*

*
**

1

1
11

1
1

p
p

t
p

p

p
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t
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t
p
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













 .    (3.14) 

 
 Then, we get MPp

t, which is a Magnification Parameter of TESp
t. MPp

t assumes an intermediate role by adjusting 
the input reduction target and the output increase target in formulas (3.18) and (3.19) in order to ensure an alignment 
of the TESp

t and DFM projection score for DMUk. 
 
Step 7. Solve the Dynamic-TO-DFM model using formulas (3.15)–(3.22); then, an optimal input reduction value 

and output increase value to reach a TESp
t can be calculated as follows: 

 

min      
m

xt
mkmmkm

x dvxvFr
2

;       (3.15) 

min      
s
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skssks

y duyuFr
2

;                                   (3.16) 

      s.t.    
 
 





 



m

xt
mkmkm

s
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sksks

t
p dxv

dyu
TES ;      (3.17) 

      *
*

1

1
11

p
p

t
p

m
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mkmkm MPdxv





  ;  (3.18) 

     *

*
**

1
1

p

p
p

t
pp

s

yt
sksks MPdyu







  ;          (3.19) 

0 xt
mkmk dx ;      (3.20) 

0xt
mkd ;        (3.21) 

0yt
skd .        (3.22) 

 
Step. 6 and Step. 7  are repeated computations using the values t = 1, 2, …, P.  
 
Step 8. Period p makes a shift to period P; then the Dynamic-TO-DFM model is completed. 
 
Step 9. Decision – or policy– makers may next conduct a feasibility analysis for these improvement plans. If the 
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plan proposed still remains out of reach at p, then the decision – or policy– maker may set an adjusted 

Final Target Efficiency Score at the target achievement period P, like FTES஺ௗ௝௨௦௧௠௘௡௧
௉ . Then Step.2 to 

Step.7 are repeated computations. 
 
An illustration of the TS-TO-DFM model is given in Figure 5, and  an illustration of the Dynamic TO-DFM 

model is given in Figure 6 

 

Figure 5 Illustration of TS-TO-DFM model 
 

 
Figure 6 Illustration of Dynamic TO-DFM model 

 
From Figure 5, we notice that our TS-TO-DFM model assumes that the efficiency frontier is fixed at any time 

period. That is to say, the TS approach does not incorporate a frontier-shift effect in setting the target improvement 
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level, as shown in Figure 5.  
In contrast, from Figure 6 we notice that an new Dynamic TO-DFM model includes both a frontier shift-effect 

and a catch-up effect of target-settings to achieve a target improvement level in order to programme more realistic 
policy initiatives, as is suggested in Figure 6. 
 
 
4.  An evaluation of the economic performance of Japanese cities 
4.1 Database and analytical framework 

 
For our empirical analysis we use a set of relevant input and output data from 2007 to 2013 for a set of 16 Japanese 
big cities (so-called government-ordinance-designated cities, in Japan) to evaluate and compare their broad 
economic efficiency. The DMUs used in our analysis are listed in Table 1. 

 
Table 1 A list of Japanese big cities 

No City No City 

1 Sapporo 9 Hamamatsu 

2 Sendai 10 Nagoya 

3 Saitama 11 Kyoto 

4 Chiba 12 Osaka 

5 Yokohama 13 Kobe 

6 Kawasaki 14 Hiroshima 

7 Niigata 15 Kitakyushu 

8 Shizuoka 16 Fukuoka 

 
For our comparative analysis of these 16 cities, we consider two Inputs (I): 

(I1) Population (Reference: population data from the Basic Resident Register in Japan; data acquisition from 
each city’s website); 

 (I2) City budget (Reference: Ministry of Internal Affairs and Communications; source: Statistical Yearbook 
of Local Government Finance 2007-2013. http://www.soumu.go.jp/iken/zaisei/toukei.html) 

In our extended DEA model also two Outputs (O) are incorporated: 
(O1) GDP (Reference: municipal accounts, data acquisition from each city’s website); 
(O2) Tax revenues (Reference: Ministry of Internal Affairs and Communications, Statistical Yearbook of 

Local Government Finance 2007-2013, http://www.soumu.go.jp/iken/zaisei/toukei.html) 
 
4.2 Efficiency evaluation based on the Super-Efficiency CCR-I model 
 
The efficiency assessment result for the 16 cities from 2007 to 2013 based on the Super-Efficiency CCR-I model is 
presented in Figure 6. 

From Figure 6, it can be seen that Osaka, Nagoya, Kawasaki and Saitama in 2013 may be regarded as super-
efficient cities. It can also be seen that the efficiency scores of Sendai 2011 decline drastically compared to their 2010 
score. It is plausible that this reflects the direct influence of the Tohoku earthquake in 2011. We also notice that 
Sapporo city has the lowest efficiency scores. Sapporo city may also suffer from an indirect influence of the 
earthquake from 2011; it seems necessary to make a serious effort to improve the urban economic performance of 
this city. We will now address here in particular the city of Sapporo. 
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Figure 7 Efficiency scores for Japanese big cities based on the SE-CCR-I model 
 
 

4.3 Efficiency improvement projection based on TS-TO-DFM model and the Dynamic TO-DFM models 
for Sapporo 
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Next, the above-mentioned Dynamic TO-DFM model will be used to analyse realistic circumstances and to 
determine the requirements for an operational strategy for a feasible efficiency improvement in Sapporo city. We 
will use Sapporo 2007 as an illustrative case and point of reference, and present an efficiency-improvement 
projection result based on the TS-TO-DFM model and the Dynamic TO-DFM model as shown in Figure 8. The 
2007 efficiency value for Sapporo is 0.679, and we set the origin period p = 0 at 2007. 

 We now consider a target achievement time P of 6 (i.e., 2013), while the steps necessary to improve efficiency 
are given by the time series t = 1, 2, 3, 4, 5, and 6 (i.e. 2008, 2009, 2010, 2011, 2012, and 2013). The final TES for 
Sapporo 2013 is somewhat arbitrarily set at 0.800. Each TES for each year calculated by the TS-TO-DFM model 
and the Dynamic TO-DFM model is shown in Figure 8. Especially the TES for each year calculated by the 
Dynamic TO-DFM model represents a frontier shift effect, as shown in Figure 6. The resulting input reduction 
values and the output increase values for Sapporo city based on the TS-TO-DFM model and the Dynamic TO-
DFM model are presented in Figure 9 and 10.  

From Figure 9, we notice that the projection results of the TS-TO-DFM model seem to be linearly increasing 
values in a rather simplistic form year by year. 

 In contrast, from Figure 10 we notice that the projection results of the Dynamic TO-DFM model seem to reflect 
a frontier-shift effect for each year, so as to reach a score of 0.800 in 2013. We also notice that the TES from 2011 to 
2013 might represent an unrealistic situation, as is does not incorporate an influence of the Tohoku earthquake in 
2011. In fact, the efficiency score of Sapporo from 2011 to 2013 appears to clearly drop to a lower value, as shown 
in Figure 7.  In this regard, the Dynamic TO-DFM model can incorporate an adjusted FTES as Step.9 in Section 3, 

based on these facts and real-world conditions. In the present study, we assume a FTES஺ௗ௝௨௦௧௠௘௡௧
ଶ଴ଵଷ  set at 0.750, 

while each target score is set for each year from 2011 to 2013 in Figure 8. The result of this revised Dynamic target 
TO-DFM model is presented in Figure 11. 

 

 
Figure 8 Efficiency score and Target Efficiency Score (TES) for each year in Sapporo 
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Figure 9 Efficiency-improvement projection results based on the TS-TO-DFM model (Sapporo) 

 

 
Figure 10 Efficiency-improvement projection results based on the Dynamic-TO-DFM model (Sapporo) 

 

 
Figure 11 Efficiency-improvement projection results based on the revised target Dynamic TO-DFM 

model (Sapporo) 
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From Figure 11, it is noteworthy that the Dynamic TO-DFM model shows the characteristics of flexibility and 
implementability in urban policy programmes.  

 
 
5. Conclusion 
 
In this paper, we have presented a new DEA methodology, the Dynamic TO-DFM model. Its feasibility was tested 
for improving the economic efficiency of Japanese big cities; the new model was examined on the basis of real-world 
information on the relevant indicators. From the above finding, we note that the Dynamic TO-DFM model is able to 
present a realistic efficiency-improvement plan which incorporates a stepwise target score in a time-series perspective, 
frontier shift effects, and real world conditions so as to achieve a target efficiency score. In conclusion, our Dynamic 
TO-DFM model is able to programme a more realistic efficiency-improvement urban development plan, and may 
thus provide a meaningful contribution to decision making and planning for efficiency improvement of Japanese big 
cities. 
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Appendix 
 
A1. Outline of DEA and Efficiency Improvement Projection  

     
   The standard Charnes et al. (1978) model (abbreviated hereafter as the CCR-input model) for a given DMUj 

),,1( Jj   to be evaluated in any trial k (where k ranges over 1, 2 …, J) may be represented as the following 

fractional programming (FPk) problem: 

 (FPk)     
uv,
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where   represents an objective variable function (efficiency score); xmj is the volume of input m (m = 1,…, M) for 
DMUj(j = 1,…,J); ysj is the output s (s = 1,…,S) of DMU j; and vm and us are the weights given to input m and output 
s, respectively. Model (A.1) is often called an input-oriented CCR model, while its reciprocal (i.e. an interchange of 
the numerator and denominator in the objective function (A.1) with a specification as a minimisation problem under 
an appropriate adjustment of the constraints) is usually known as an output-oriented CCR model. Model (A.1) is 
obviously a fractional programming model, which may be solved stepwise by first assigning an arbitrary value to 
the denominator in (A.1), and then maximising the numerator (see also Cooper et al. (2006) and Suzuki et al. (2010)). 

The improvement projection ሺݔො௞,  :ො௞ሻ can now be defined in (A.2) and (A.3) asݕ
 

ො௞ݔ         ൌ ௞ݔ∗ߠ െ  (A.2)        ;∗ିݏ
ො௞ݕ         ൌ ௞ݕ ൅  ା∗         (A.3)ݏ

 
These equations indicate that the efficiency of (xk, yk) for DMUk can be improved if the input values are reduced 

radially by the ratio   and the input excesses s  are eliminated (see Figure A1).  
The original DEA models presented in the literature have focused on a uniform input reduction or on a uniform 

output increase in the efficiency-improvement projections, as shown in Figure A1 (  =OC’/OC).  
 

 
Figure A1 Illustration of original DEA projection in input space 

 
 

 A2. A Super-Efficiency DEA Model 
 
   In a standard DEA model, all efficient DMUs get by definition a score equal to 1, so that there is no logical way 

to differentiate between them. This problem has led to focused research to discriminate between efficient DMUs, 
in order to arrive at an unambiguous ranking, or even a numerical rating of these efficient DMUs, without affecting 
the results for non-efficiency. In particular, Andersen and Petersen (1993) developed a radial Super-Efficiency 
model, while, later on, Tone (2001) designed a slacks-based measure (SBM) of super-efficiency in DEA. In general, 
a Super-Efficiency model aims to identify the relative importance of each individual efficient DMU, by designing 
and measuring a score for its ‘degree of influence’ if this efficient DMU is omitted from the efficiency frontier (or 
production possibility set). If this elimination really matters (i.e. if the distance from this DMU to the remaining 
efficiency frontier is large), and, thus, the firm concerned has a high degree of influence and outperforms the other 
DMUs, it gets a high score (and is thus super-efficient). Therefore, for each individual DMU a new distance result 
is obtained, which leads to a new ranking, or even a rating of all the original efficient DMUs. 

Anderson and Petersen (1993) have developed the Super-Efficiency model based on a radial projection 
(including a CCR model) to arrive at a ranking of all efficient DMUs. The efficiency scores from a super-efficiency 
model are thus obtained by eliminating the data on the DMUk to be evaluated from the solution set. For the input 
model, this can then result in values, which may be regarded, according to the DMUk, as a state of super-efficiency. 
These values are then used to rank the DMUs, and, consequently, efficient DMUs may then obtain an efficiency 
score above 1.000 (see also Suzuki et al. (2015)).  

Input 1(x1)

Input 2 (x2) 

O 

A 
C 

B 

C’ 
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The super-efficiency model based on a CCR-I model can now be written as follows: 
 

          min
ఏ,ఒ,ௌష,ௌశ

ߠ  െ ିݏ݁ െ  ାݏ݁

 

s.t.           θݔ௞ ൌ ∑ ௝ݔ௝ߣ ൅ ௃ିݏ
௝ୀଵ,ஷ௞             (A.4) 

௞ݕ            ൌ ∑ ௝ݕ௝ߣ െ ା௃ݏ
௝ୀଵ,ஷ௞  

, 

 
where e is a unit vector (1,...,1), representing a utility factor for all elements.  

0,,  ssj


