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1. Introduction	

The	European	regional	policy	(ERP)	is	a	natural	field	of	interest	to	study	the	effects	of	regional	policies:	ERP	
is	 the	wider	 and	 probably	 longer	 experiment	 of	 income	 redistribution	 across	 regions	 and	 countries.	 The	
policy	 is	 devoted	 to	 the	 reduction	 of	 economic	 and	 social	 disparities	 between	 regions.	 Each	 EU	 country	
makes	yearly	 transfers	of	about	1%	of	own	national	GDP	to	 the	European	Union,	and	receives	a	variable	
share	 of	 these	 founds,	 depending	 on	 regional	 wealth	 and	 disparity	 with	 European	 average	 per	 capita	
income.	Moreover,	 there	 is	not	only	a	academic	 interest	 in	evaluating	the	policy:	both	policy	makers	and	
citizens	are	 interested	in	knowing	the	effects	of	ERP,	 in	reason	of	the	huge	amount	of	financial	resources	
dedicated	to	European	regional	intervention	

Many	scholars	have	assessed	the	impact	of	European	regional	policy	on	regional	growth	and	employment.		
However,	the	capacity	of	the	policy	to	promote	regional	economic	growth	remains	controversial,	and	the	
evaluation	exercises	are	not	unanimous	about	its	impact	on	European	regional	development	(Dall'erba	and	
Fang,	 2017,	 Fiaschi	 et	 al,	 2017	 for	 a	 recent	 review).	 Only	 few	 papers,	 among	 many,	 are	 based	 on	 the	
counterfactual	 approach	 that,	 in	 our	 opinion,	 enables	 a	more	 precise	 identification	 of	 the	 effects	 of	 the	
policy,	regardless	of	the	choice	of	the	transmission	channels	through	which	the	policy	operates.	

Another	aspect	 that	 is	usually	neglected	 in	 these	 studies	 is	 the	presence	of	 spatial	externalities;	 regional	
policies	are	designed	to	boost	growth,	employment	and	investment	and	generate	spillovers	between	firms,	
industries	 and	 territories.	 In	 this	 perspective,	 the	 role	 of	 neighbors	 becomes	 crucial	 when	 we	 want	 to	
estimate	 the	 impact	of	 the	policy.	Therefore,	 the	evaluation	of	European	 regional	policy	has	 to	 take	 into	
account	properly	the	spatial	dimension	of	these	effects.	This	is	the	approach	we	used	in	this	paper.	The	aim	
is	 to	 assess	 the	 regional	 impact	 of	 the	 policy	 in	 a	 counterfactual	 robust	 framework,	 analyzing	
simultaneously	direct	and	indirect	effects,	originating	from	spatially	neighboring	regions.		

Regional	economic	development	depends	not	only	on	the	regional	characteristics	of	production	factors,	but	
also	 on	 the	 features	 of	 neighboring	 regions,	 the	 spatial	 connectivity	 structure	 of	 the	 regions,	 and	 the	
strength	 of	 spatial	 dependence	 (LeSage	 and	 Fischer,	 2008;	 LeSage	 and	 Pace,	 2009,	 Pieńkowski	 and	
Berkowitz,	2015).	Generally,	 the	presence	of	a	spatial	 interaction	 implies	that	subsidies	 in	a	 region	affect	
also	contiguous	regions.	In	this	case,	the	standard	method	used	for	the	counterfactual	evaluation	cannot	be	
used:	 the	 stable	 unit	 treatment	 value	 assumption	 (SUTVA)	 in	 the	 Rubin	 model	 is	 not	 valid	 and	 other	
econometric	 evaluation	methods	 should	 be	 used	 in	 order	 to	 detect	 the	 consistent	 policy	 impact	 in	 the	
presence	of	spatial	dependence.	(Cerulli,	2015;	De	Castris	and	Pellegrini,	2015).		
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The	 intensity	 of	 the	 European	 regional	 policy	 is	 strongly	 heterogeneous	 across	 regions	 and	 countries	
(Cerqua	 and	 Pellegrini,	 forthcoming).	 However,	 even	 if	 Structural	 Funds	 payments	 should	 be	 the	 main	
variable	of	 interest	 in	 the	evaluation	of	Structural	Funds	 regional	 impact,	 several	 studies	 in	 the	 literature	
use	only	a	binary	variable,	indicating	whether	a	given	region	is	eligible	for	Structural	Funds	transfers	or	not.	
Actually,	the	use	of	dummy	variables	for	Structural	Funds	payments	neglects	substantial	differences	in	aid	
intensities	between	regions.	The	difference	in	regional	EU	transfers	intensity	is	large:	it	varied	from	below	1	
%	of	GDP	in	some	Objective	1	regions	to	above	10	%	in	the	others	(Pieńkowski	and	Berkowitz,	2015).	

The	heterogeneity	of	Structural	Funds	intensity	values	by	regions	is	depicted	in	the	following	map,	related	
to	the	Structural	Funds	transfer	payments	per	capita	in	the	period	2000-2006.	We	consider	NUTS2	regions	
that	 refers	 to	 EU15	 countries	 excluding	 over-seas	 territories	 and	 including	 Eastern	 Germany.	 The	 NUTS	
classification	refers	to	the	administrative	configuration	of	the	year	2006.	

	

[insert	figure	1]	

	

Moreover,	 if	 regions	 are	 clustered	 into	 more	 developed	 areas	 and	 less	 developed	 areas,	 the	 effects	 of	
neighbors'	spillover	reinforce	cluster	differences.	This	is	particularly	true	in	many	areas	of	Southern	Europe,	
such	 as	 the	Mezzogiorno	 in	 Italy,	 where	 there	 is	 an	 agglomeration	 of	 areas	 with	 low	 productivity,	 high	
unemployment,	 low	 levels	of	education,	 low	 income,	especially	 if	compared	to	the	rest	of	 the	country.	 It	
follows	that	spatial	effects	reinforce	the	difficulties	in	development	and	thus	those	of	convergence	with	the	
rest	of	Europe.	

The	use	of	counterfactual	methods	for	evaluating	European	regional	policy	is	very	recent.	These	papers	are	
based	on	the	Rubin	Causal	Model	(Rubin,	1974)	which	explicitly	excludes	interference	among	treated	and	
not	 treated	 units.	 The	 presence	 of	 a	 spatial	 interaction	 implies	 that	 subsidies	 in	 a	 region	 also	 affect	
contiguous	regions.	In	this	case,	the	stable	unit	treatment	value	assumption	(SUTVA)	in	the	Rubin	model	is	
not	valid	and	other	econometric	evaluation	methods	should	be	used	in	order	to	detect	a	consistent	policy	
impact	in	the	presence	of	spatial	dependence.	(Cerulli,	2015;	De	Castris	and	Pellegrini,	2015).	

The	 traditional	 approach	 to	 evaluate	 policy	 effect	 in	 a	 counterfactual	 framework	 using	 a	 continuous	
treatment	is	the	“generalized	propensity	score”	or	GPS	(see	Becker,	2012	for	the	case	of	Structural	Funds).	
The	GPS	method	allows	the	estimation	of	a	Dose-Response	Function	(Hirano	and	 Imbens,	2004;	 Imai	and	
Van	Dyk	(2004);	Flores	et	al.,	2012;	Bia	and	Mattei,	2012,	Cerulli,	2012;	Bocci	and	Mariani,	2015,	Magrini	et	
al.	 2017),	 where	 the	 marginal	 effect	 of	 treatment	 varies	 in	 response	 to	 different	 levels	 of	 the	 same	
treatment.	However	GPS	faces	explicitly	selection	bias	 issues	but	does	not	control	 for	spillover	effects.	 In	
presence	of	spillover	effects,	even	a	perfect	control	of	the	selection	bias	is	not	sufficient	to	avoid	a	biased	
estimate	of	the	policy	effect	(Cerqua	and	Pellegrini,	2017).	At	our	knowledge,	in	the	literature	there	are	not	
evaluation	methods	that	explicitly	tackle	both	issues,	i.e.	spatial	 interference	among	units	and	continuous	
treatment.	

In	 this	 study,	 we	 evaluate	 the	 impact	 of	 European	 Regional	 Policy	 -	 considering	 Structural	 Funds	 and	
Cohesion	 Fund-	 on	 regional	 economic	 growth	 in	 the	 European	 Community,	 in	 presence	 of	 spatial	
interactions	 among	 regions	 and	 heterogeneous	 policy	 intensity.	 We	 propose	 a	 new	 methodology	 for	
estimating	 the	 unbiased	 “net”	 effect	 of	 ERP,	 based	 on	 a	 novel	 “spatial	 GPS”	 technique	 that	 compare	
treated	and	not	treated	regions	affected	by	similar	spillovers	due	to	ERP	impact.	

The	method	is	based	on	a	modified	version	of	the	Spatial	propensity	score	matching	proposed	in	De	Castris	
and	 Pellegrini	 (2015).	 The	 analysis	 verifies	 if	 the	 heterogeneous	 impact	 of	 ERP	 between	 regions	 also	
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depends	 on	 the	 intensity	 of	 treatment,	 measured	 by	 the	 amount	 of	 funds	 received	 by	 each	 region	
normalized	to	its	population.	

The	results	show	that	spatial	spillovers	have	a	significant,	even	if	moderate,	effect	on	regional	growth.	On	
average,	the	net	effect	of	the	ERP,	excluding	the	impact	of	spatial	interactions	with	the	neighboring	regions,	
is	lower	than	the	gross	effect	that	includes	spillovers.	The	reason	is	the	spatial	distribution	of	ERP.	Being	the	
ERP	intensity	higher	among	low-income	regions	and	clusters,	the	spillover	effects	in	these	areas	are	lower	
than	 average.	 Moreover,	 the	 impact	 is	 non	 linear,	 and	 after	 a	 certain	 intensity	 threshold,	 additional	
transfers	are	not,	on	average,	associated	with	significantly	higher	regional	growth.	This	pattern	has	relevant	
policy	implications,	because	it	suggests	a	different	way	of	distributing	the	policy	among	regions,	taking	into	
account	both	the	intensity	of	the	aid	and	the	agglomeration	effects.		

The	 rest	 of	 the	 paper	 is	 organized	 as	 follows.	 In	 the	 next	 section,	 we	 present	 a	 brief	 summary	 of	 the	
relevant	literature	regarding	the	evaluation	of	ERP	considering	continuous	treatment	and	spatial	spillover.	
In	Section	3,	we	discuss	the	econometric	methodology	applied	for	the	identification	of	causal	effects	of	the	
EU’s	regional	transfers	on	economic	growth	and	in	Section	4	the	empirical	identification	and	specification	of	
the	model.	 Details	 on	 the	 sources	 and	 the	 construction	 of	 data	 at	 the	NUTS-2	 regions	 level	 for	 the	 two	
programming	periods	1994-1999	and	2000-2006	are	in	Section	5.	We	present	the	results	and	interpret	the	
findings	 in	 Section	 6.	 In	 Section	 7,	 we	 use	 our	 model	 to	 analyze	 the	 impact	 of	 ERP	 spillover	 of	 lagging	
regions	 in	 Europe.	 The	 last	 section	 concludes	with	 a	 summary	of	 the	most	 important	 findings	 and	 some	
political	implications.	
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2.	Literature	

The	literature	on	evaluation	of	the	effects	of	transfer	intensity	in	a	counterfactual	framework	is	still	scarce.	
Up	to	now,	we	are	aware	of	only	four	papers.	Mohl	and	Hagen	(2010),	using	a	panel	approach	and	NUTS2	
grid,	show	that	Objective	1	payments	have	a	positive	but	not	statistically	significant	impact	on	the	regions	
GDP	growth	rate.	Two	papers	are	methodologically	based	on	the	GPS	matching,	a	non-parametric	method	
to	estimate	treatment	effects	conditional	on	observable	determinants	of	treatment	intensity,	to	assess	the	
effect	of	the	policy.		Becker	et	al.	(2010),	using	a	NUTS	3	grid,	identify	a	modest	positive	impact	of	Objective	
1	transfers	on	regional	growth	of	GDP	per	capita,	but	the	marginal	 impact	 is	nonlinear,	and	 is	decreasing	
after	a	certain	threshold.	Becker	et	al.	(2016)	investigate	the	2007-2013	programming	period	using	several	
outcome	variables,	 including	education	and	 innovation	outcomes,	and	 the	NUTS2	grid.	Their	 findings	are	
generally	 positive	 and	 suggest	 that	 regions	 generally	 tend	 to	 benefit	 from	balanced	 funding	 of	 activities	
unless	 they	 are	 extremely	 specialized	 ex	 ante.	 Cerqua	 and	 Pellegrini	 (forthcoming)	 exploit	 a	 different	
methodological	 approach,	 extending	 the	 regression	 discontinuity	 analysis	 to	 the	 case	 of	 continuous	
treatment.	The	results	show	a	positive	and	statistically	significant	growth	effect	of	 the	European	regional	
policy	and	confirm	that	the	effect	of	policy	intensity	can	be	nonlinear,	with	marginal	effect	that	is	negligible	
after	a	given	intensity.		

These	models	control	 for	spatial	error	or	spatial	autocorrelation,	but	the	SUTVA	assumption	 is	used	 in	all	
the	 previous	 analysis.	 The	 econometric	 problem	 here	 is	 not	 to	 deal	 with	 the	 traditional	 assumption	 of	
independence	 (in	 the	 space)	 of	 the	error	 terms,	 but	with	 the	presence	of	 spatial	 interference,	 or	 spatial	
spillover,	 that	 is	 not	 properly	 captured	 by	 a	 simple	 spatial	 econometric	 model.	 Therefore,	 the	 earlier	
literature	 related	 to	 the	use	of	 spatial	econometric	model	 in	 the	evaluation	 framework	 (Dall’erba	and	Le	
Gallo,	2007,	2008;	Bouayad-Agha	et	al.,	2011)	is	of	little	help	in	our	case.	Our	paper	is	more	along	the	spirit	
of	Arpino	and	Mattei	(2016),	where	 in	a	counterfactual	framework	interactions	among	units	are	explicitly	
modeled,	 considering	 which	 firms	 interact	 with	 each	 other,	 and	 the	 relative	 magnitudes	 of	 these	
interactions.	 Another	 close	 paper	 is	 Cerqua	 and	 Pellegrini	 (2017).	 They	 propose	 a	 new	 framework	 that	
partially	relaxes	the	SUTVA	identifying	three	groups	of	firms:	treated,	non	treated	and	affected	(untreated	
firms	 that	 enjoyed	 externalities	 from	 treated	 firms).	 Using	 these	 groups	 the	 paper	 can	 detect	
contemporaneously	the	direct	effects	of	the	regional	policy	and	the	indirect	(spillover)	effects	coming	from	
the	interaction	of	firms.	These	results	are	achieved	on	the	basis	of	strict	identification	assumptions	that	are	
quite	strong.	Our	paper	is	based	on	a	different	identification	approach	that	extend	the	approach	used	in	De	
Castris	and	Pellegrini	(2015)	to	the	case	of	continuous	treatment.	The	idea	is	to	compare	treated	and	not	
treated	units	subject	to	similar	spillover	effects	due	to	treatment,	and	the	difference	between	treated	and	
not	 treated	outcome	 identifies	 the	 “net”	or	 “direct”	 treatment	 effects	 (i.e.,	 net	 of	 spillover).	 The	easiest	
method	is	to	incorporate	the	intensity	of	spillover,	and	therefore	the	spatial	lag	of	the	characteristics	that	
affect	 spillovers,	 in	 the	GPS	estimation.	Our	approach	does	not	 involve	 strong	 identification	assumptions	
but	has	a	cost:	we	cannot	simultaneously	and	consistently	estimate	the	spillover	effects.	 Instead,	we	can	
only	 derive	 them	 indirectly	 by	 comparing	 the	 results	 obtained	 with	 the	 standard	 approach	 with	 those	
resulting	from	our	method.	

	 	



	

5	
	

3.		Relaxing	SUTVA	in	presence	of	spatial	dependence	between	regions	

	

Our	methodological	approach	is	easily	described	starting	from	the	case	of	a	binary	treatment	.		

Consider	a	group	of	regions	indexed	by	𝑖 =	1,…,	𝑁.	

Let	be	𝐷𝑖	the	random	variable	that	denotes	a	treatment	indicator	equal	to	1	if	treatment	is	received	by	the	
region	and	0	otherwise.		

Let	𝑫 ≡	(𝐷1,…,	D𝑖,…,𝐷𝑁)	represent	the	treatment	assignment	for	all	regions.	

We	describe	the	potential	outcome	for	region	𝑖	as	a	function	of	the	region’s	own	treatment	assignment	(𝐷𝑖)	
and	 the	 treatment	 assignment	 of	 other	 regions	 (𝑫−𝑖).	 Therefore,	 for	 region	 𝑖	 the	 potential	 outcome	 is	
denoted	by	𝑌𝑖	(𝑫).	In	this	way	the	potential	output	of	each	region	is	affected	by	the	potential	output	of	all	
regions.	We	can	consider	SUTVA	a	special	case	where	the	potential	outcome			𝑌i	(𝑫)	=	𝑌i	(𝐷i).	

However,	 even	 in	 this	 simplified	 framework	 a	 reduction	 in	 the	 complexity	 of	 the	 causal	 inference	
framework	is	needed	in	order	to	achieve	a	solution.	The	simplifying	assumption	is	that	interference	in	space	
across	region	can	be	described	by	a	first-order	spatial	dependence.	

Therefore,	 adopting	 the	 parsimonious	 parameterization	 for	 spatial	 dependence	proposed	by	Ord	 (1975),	
output	is	described	by	a	spatial	first-order	autoregressive	process.	Applied	to	our	problem,	we	have:	

	 (1)		 Yi	(D)	=	Yi	(Di,	wiY-i	(D-i)	

Where	wi	is	the	𝑖-th	row	of	the	usual	spatial	weight	matrix	W	(Le	Sage	and	Pace,	2009).	The	cross-product	
wiY-i	 is	 the	spatial	 lag,	 representing	a	 linear	combination	of	values	of	variable	y	 constructed	 from	regions	
that	neighbour	observation	𝑖.	

The	 present	 framework	 allows	 us	 to	 estimate	 different	 causal	 effects;	 however,	 we	 are	 particularly	
interested	in	a	specific	causal	effect,	that	is	the	treatment	effect	for	a	subsidized	region	i:		

	 (2)	 	𝑌! 𝐷! = 1,𝑤!𝑌!!(𝑫!!) − 𝑌!(𝐷! = 0,𝑤!𝑌!!(𝑫!!))	

Note	 that	 the	spillover	effects	here	are	equal	among	the	status	of	 treated	and	the	status	of	not	 treated.	
Therefore,	 the	 impact	 of	 the	 treatment	 is	 estimated	 without	 (“net”	 of)	 spillover	 coming	 from	 the	
neighbours.		

Because	 of	 the	 fundamental	 problem	of	 causal	 inference	 (Holland,	 1986),	we	 consider	 all	 the	 regions	 to	
estimate	the	average	treatment	effect	(ATT):	

	 (3)		 𝐸[𝑌!(𝐷! = 1,𝑤!𝑌!!(𝑫!!)) − 𝑌!(𝐷! = 0,𝑤!𝑌!!(𝑫!!))|𝐷]	

where   i=	1,…,	𝑁	

The	counterfactual	 scenario	 for	 the	ATT	consists	of	 changing	 the	assignment	 for	 region	 𝑖	 from	𝐷! = 1	 to	
𝐷! = 0	without	removing	the	treatment	(ERP)	to	all	the	other	regions	in	the	neighbours	of	i.	Therefore,	the	
assumption	 implies	 that	spillover	effects	among	 treated	and	non	 treated	are	equal,	and	we	estimate	 the	
net	 impact,	 that	 is	 cleared	 from	 spillover	 effects.	 These	 assumptions	 will	 allow	 us	 to	 partially	 relax	 the	
SUTVA.	However,	the	assumption	imposes	a	constrain	on	the	the	matching	procedure:	we	have	to	match	
regions	with	similar	spatial	spillover	effects.	

This	 is	 not	 the	 only	 possible	 choice.	 Cerqua	 and	 Pellegrini	 (2017)	 remove	 the	 subsidy	 from	all	 the	 other	
units	neighbouring	i,	in	the	counterfactual	scenario,	i.e.,	𝑫!𝒊	is	changed	to	the	null	vector	if	𝑫!𝒊 ≠ 𝟎	
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Empirically,	 if	 we	 assume	 that	 selection	 on	 treatment	 is	 due	 to	 a	 set	 of	 observable	 pre-treatment	
characteristics	𝑋!,	the	estimate	of	the	“net”	ATT	can	be	carried	out	using	a	nonparametric	approach,	such	
as	the	matching	estimator	proposed	by	Rosenbaum	and	Rubin	(1983)	and	developed	in	several	evaluation	
papers	(see	Blundell	and	Costa	Dias,	2008).	It	relies	on	the	assumption	that	selection	in	the	intervention	is	
observable,	that	is,	it	can	be	taken	into	account	by	conditioning	on	observed	individual	characteristics.	

A	general	formulation	for	the	matching	estimator	(αMM)	is	given	by	(4):	

(4)	 		 	

As	the	number	of	characteristics	used	in	the	match	increases,	the	chances	of	finding	a	match	are	reduced.	
This	 obstacle	 is	 overcome	 thanks	 to	 an	 important	 result	 (Rosenbaum	 and	 Rubin,	 1983)	 showing	 that	
matching	on	a	single	 index	reflecting	the	probability	of	participation	achieves	consistent	estimates	of	 the	
treatment	effect	in	the	same	way	as	matching	on	all	covariates.	This	index	is	the	Propensity	Score	(PS),	and	
this	variant	of	matching	is	well	known	as	“propensity	score	matching”.	Any	standard	probability	model	can	
be	used	to	estimate	the	PS.			

	(5)	 PSi	=	Pr{Di	=	1|Xi}	=	F(h(Xi))		

where	F(.)	is	the	normal	or	the	logistic	cumulative	distribution	and	h(Xi)	is	a	function	of	covariates	Xi	

In	presence	of	spatial	 interference	among	units,	using	the	previous	assumption,	we	can	define	a	“spatial”	
PS	(PSspat),	that	exploits	the	spatial	correlation.	The	probability	of	participation	is	therefore	conditioned	to	
the	level	of	spillovers:	

(6)	 PSspat	=	F(h(X),	g(𝑤!𝑌!!(𝑫!!)))	

The	 framework	 in	 the	 case	 of	 continuous	 treatment	 is	 more	 complex.	 However,	 we	 can	 use	 similar	
hypotheses	 and	 consider	 how	 to	 change	 the	 effect	 of	 the	 treatment	 in	 presence	 of	 different	 treatment	
intensities,	maintaining	the	spatial	spillover	constant.	

The	framework	in	the	case	of	continuous	treatment	can	follow	Hong	and	Raudenbush	(2013).	The	potential	
outcome	 for	 region	 𝑖	 is	 described	 as	 a	 function	 of	 the	 region’s	 own	 treatment	 intensity	 (T𝑖)	 and	 the	
treatment	intensity	of	other	regions	(T−𝑖).	In	this	way	the	potential	output	of	each	region	is	affected	by	the	
potential	output	of	all	regions,	that	depends	on	all	the	different	intensities	of	treatment.	

	 (7)		 Yi	(T)=	Yi	(Ti,	wiY-i	(T-i))	

Here	Ti	assumes	different	values,	from	0	to	Tmax	

If	Ti>Tj,	the	“net”	effect	of	increasing	T	from	Ti	to	Tj	is:	 	

(8)		 𝐸[𝑌!(𝑇! ,𝑤!𝑌!!(𝑻!!)) − 𝑌!(𝑇! ,𝑤!𝑌!!(𝑻!!))|𝑻]	

The	 estimation	 of	 (8)	 is	 not	 easy.	 In	 absence	 of	 interference,	 the	 traditional	 approach	 is	 based	 on	 the	
Generalized	Propensity	Score,	proposed	by	Hirano	and	Imbens	in	2004.	Given	𝑋! 	a	vector	of	pre-treatment	
covariates	and	being	𝑇! 	the	level	of	received	financial	resources	by	ERP,	the	value	of	the	potential	outcome	
corresponding	to	this	treatment	level	is:	

9       𝑌!=	𝑌!(𝑇! 	)		

Let	r	the	conditional	density	of	the	treatment	given	the	covariates	X	and	the	treatment	T:	

(10)				r(T;	X)	=	fT|X(T|X)	

ˆ S NS
MM i ij j i

i S j NS
Y Yα ω ω

∈ ∈

⎛ ⎞
= −⎜ ⎟

⎝ ⎠
∑ ∑
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The	generalized	propensity	score	is	defined	by		R	=	r(T;X).	However,	if	we	introduce	spatial	interference,	we	
have	to	consider	the	spillovers.	Also	in	the	case	of	GPS	we	pair	units	with	the	same	spillovers,	that	means	
with	neighbors	with	the	same	level	of	covariates.	

We	define	a	novel	estimator,	the	“spatial”	GPS,	where	the	value	of	the	GPS	for	each	region	depends	also	on	
the	outcome	and	covariates	of	neighboring:	

(11)			 R	=	r(T;X;wX)	

A	 key	 assumption,	 weak	 uncounfoundedness	 assumption,	 is	 made,	 in	 order	 to	 adjust	 for	 systematic	
differences	between	groups	receiving	different	levels	of	the	treatment	in	a	set	of	pre-treatment	variables.		

(12)		 	Y	(T)		⊥ 		T	|	X	,	wX	for	all	t		∈ 		T	.	
	

So	adjusting	for	observed	covariates	is	sufficient	to	achieve	independence	between	potential	outcomes	and	
the	 treatment	 level	 received.	The	GPS	adjusts	 for	a	one-dimensional	 score.	 It	 is	 like	a	balancing	 score	as	
defined	by	Rosenbaum	and	Rubin	(1983),	within	strata	with	the	same	value	of	r(t;	X),	the	probability	that	T	
is	equal	 to	a	given	 level	T	does	not	depend	on	 the	value	of	X.	 In	our	case	we	add	a	new	dimension	 (the	
covariates	of	the	neighbors)	and	the	probability	that	T	is	equal	to	a	given	level	T	does	not	depend	on	the	
value	of	X	and	on	the	covariates	of	the	neighbors.	

4.	Empirical	strategy	

Let	be:	Y	a	continuous	variable,	the	outcome,	in	our	case	the	regional	growth;	T	is	a	continuous	treatment	
variable,	 the	amount	of	Structural	Funds	 transfer;	GPS,	 the	generalized	propensity	 score,	 that	 is	equal	 to	
r(T,X,	wX).	

The	conditional	expectation	of	the	outcome	is	equal	to:		

	 (13)																	E[Y|T=t,	R=r]	=	E[Y(t)|	r(t,X)=r	]		=		β(t,r)	

and	it	is	estimated	as	a	function	of	a	specific	level	of	contribution	and	of	a	specific	value	of	GPS,	R	=	r	.		

In	this	approach	β(t,r)	does	not	have	a	causal	interpretation.	

The	 probability	 of	 the	 observed	 treatments	 -	 being	 equal	 to	 some	 potential	 treatment	 combination	 -	 is	
independent	of	the	covariates	in	Xi	once	we	have	conditioned	on	the	GPS.	

We	then	average	out	the	conditional	expectation	over	the	marginal	distribution	r(t,X):	

	 (14)			μ(t)	=	E[E[Y(t)	|	r(t,X)	]]	

to	get	the	average	dose-response	in	order	to	estimate	the	causal	effect	as	a	comparison	of	μ(t)	for	different	
values	of	t.	In	our	application	we	specified	a	cubic	approximation	in	the	model.	

(15)					E[Y|T;R]	=	α0	+	α1T+	α2	T	2+	α3	T	3	+	α4R+	α5R2	+	α6R3	+	α7T	R	
	

5.	Data	

We	use	an	integrated	dataset,	 including	European	data	on	Structural	Funds	and	Cohesion	Fund	payments	
for	 the	 period	 2000-2006	 by	 NUTS2	 and	 longitudinal	 information	 on	 economic	 and	 demographic	
characteristic	 of	 the	 regions.	 Our	 sample	 consists	 of	 200	 regions	 that	 refer	 to	 EU15	 countries	 excluding	
overseas	territories	and	 including	Eastern	Germany.	We	consider	a	 large	variety	of	covariates	to	describe	
the	 level	of	 regional	welfare	before	and	after	 the	policy’s	period:	GDP	at	purchasing	power	parity	 (PPP),	
employment,	population,	and	investment	at	the	level	of	NUTS2,	education	by	level,	and	regional	indicators	
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on	structural	dimension.	The	treatment	variable,	i.e.		the	dose,		is	defined	as	the	transfer	payments	to	each	
region	in	the	period	2000-2006,	in	percent	of	the	region’s	population.	

Variables	used	in	the	specification	of	the	outcome	regression	model.	
	
Covariates	 Definition	
Treatment	level	(thousand	per	capita)	 Per	capita	yearly	fund	(continuous	variable)	
Population	density	 Inhabitants	per	square	kilometre	(thousand)	
Low	skilled	human	capital	(share)	 Share	of	low	educated	people	(primary	education)	
High	skilled	human	capital	(share)	 Share	of	high	educated	people	(tertiary	education)	
Economic	level	before	the	policy	 Gross	Domestic	Product	per	capita,	year	1998	
Primary	sector	(share)	 Share	of	agriculture	employment	in	1998	
Tertiary	sectory	 Share	of	service	employment	in	1998	
Fixed	Capital	 Gross	Fixed	Capital	Formation	
Treatment	volume	Spillover	 Spatial	lag	of	yearly	public	fund	
Neighbourhood	contest:	Service	 Spatial	lag	service	
High	human	capital	Spillover	 Spatial	lag	share	of	high	educated	people	
Fixed	Capital		Spillover	 Spatial	lag	Fixed	Capital	
Dummy:	regions	over	300	euros	 Regions	with	per	capita	yearly	treatment	>	300	
Outcomes	 	

GDP	per	capita	(PPP)	growth	rate		
Gross	Domestic	Product	on	a	purchasing	power	
parity	basis	divided	by	population,	growth	rate	
period	1999-2007	

	 	
	

We	take	into	account	the	spatial	dependence	between	regions,	 in	order	to	estimate	a	spatial	generalized	
propensity	 score.	We	 introduce	 a	 spatial	weights	matrix	W	based	on	 the	binary	 contiguity	 of	 the	 spatial	
regions,	in	this	way	we	capture	spatial	interactions	under	consideration	in	our	model:		treatment	spillover	
and	 economic	 spillovers.	 Regions	 are	 determined	 to	 be	 ‘contiguous’	 if	 the	 distance	 between	 centroid	 is	
lesser	than	350	km.	W	is	a	symmetric	matrix,	with	‘0’s	along	the	diagonal.	We	can	calculate	the	spatial	lag	
of	the	treatment	variable	and	of	different	covariates:	investment,	employment,	high	education	in	the	year	
2000,	before	the	starting	of	the	program.	

	

6.	Results	

We	estimate	the	dose-response	functions	using	the	approach	developed	by	Bia	and	Mattei	(2008)	(updated	
version).	The	estimation	of	“non	spatial”	GPS	includes	several	covariates	(population	density,	share	of	low	
skilled	 human	 capital,	 share	 of	 high	 skilled	 human	 capital,	 GDP	 per	 capita	 before	 the	 policy,	 share	 of	
primary	sector,	share	of	tertiary	sector)	that	have	the	expected	sign	and	are	statistically	significant.	In	the	
estimation	of	the	“spatial”	GPS	we	also	include	the	spatial	lag	of	yearly	public	fund,	service	sector,	share	of	
high	educated	people,	fixed	capital.	The	result	of	the	estimation	are	in	the	table	1	and	2.		

Estimating	a	generalized	propensity	score,	we	construct	the	two	dose	response	function	(Figures	2	and	3)	
and	the	corresponding	marginal	treated	effects,	in	the	two	cases,	with	and	without	interference.	

The	 analysis	 can	 be	 focused	 on	 these	 graphs.	 In	 both	 cases	 the	 dose-response	 functions	 are	 non-linear,	
close	 to	 a	parabolic	 function	with	 a	maximum	around	1.5	 in	 the	 case	of	 interference,	 higher	 in	 the	 case	
without	 interference.	However,	 the	marginal	effects	cross	the	zero	 line	around	the	treatment	 level	1.2	 in	
both	 cases.	 For	 different	 treatment	 percentiles	 the	 marginal	 effects	 are	 always	 higher	 in	 the	 case	 with	
interference	than	in	the	case	without	interference,	even	the	difference	is	lower	than	the	standard	error.		
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The	 conclusion	 is	 that	 the	 effect	 in	 the	 case	 with	 interference	 is	 higher	 than	 in	 the	 case	 without	
interference,	suggesting	that	the	spillover	are	negative	even	if	non	always	statistically	significant.	

	

[Figure	2	about	here]	

[Figure	3	about	here]	

[Figure	4		about	here]	

[Figure	5	about	here	]	
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Table	1-	Marginal	effects	of	the	European	Regional	policy	treatment	

	 Marginal	effects		without	
interference	

Marginal	effects	with	
interference	

Treatment	
Percentile	

Treatment	
Intensity	

dy/dT	 Std	error	 dy/dT	 dy/dT	

1st	 9.5	 	-.000220	 .000574	 	-.000240				 .0005479		
5th	 12.8	 	-.000181	 .000543		 	-.000197	 .0005194		
10th	 14.7	 	-.000159	 .000526	 	-.000172	 .0005033	
25th	 22.4	 	-.000075	 .000458	 -.000077	 .0004415	
50th	 32.1	 	.000023	 .000381	 .000033	 .0003695	
75th	 85.1	 	.000411	 .000155	 	.000470	 .0001346	
90th	 208.4	 	.000336	 .000249	 	.000440	 .0002318	
95th	 253.7	 	-.000035	 .000240	 .000047					 	.0002550	
	

	

7.	Neighbour	effects	in	low-income	clusters:	the	case	of	the	Southern	European	Regions	

In	 order	 to	 show	 the	 neighbor	 effects	 in	 European	 regions	 that	 are	 characterized	 by	 low	 income,	 we	
consider,	 along	 the	 two	 programming	 periods	 1994-1999	 and	 2000-2007,	 Objective	 1	 regions	 of	 five	
countries	Portugal,	Spain	 ,	 Italy,	France,	Greece.	However,	we	exclude	overseas	territories,	and	therefore	
France	is	not	in	the	group.	Considering	the	spatial	distribution	of	the	remaining	Southern	European	Regions	
(SER),	3	main	clusters	are	observed	(South	Spain	and	Portugal,	Mezzogiorno,	South	Greece),	characterized	
by	low-income	regions	with	low-income	neighbors.	

Table	2:		Southern	European	Regions	in	our	analysis	

Country	 Number	of	regions	
Italy	 8	
Spain	 8	
Portugal	 4	
Greece	 13	
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Table	3.		Main	variables	for	southern	regions	and	all	the	other	ones	

	
Others	 SER	

N.	regions	 167	 33	
GDP	per	capita	1988	 25534		 14623	(57%)		
Population	Average	 1879	 1821	
Area	square	km	 14970	 21801	
Per	capita	Structural	Funds	 41	 215	
Structural	variables.	 		 		
Population	over	65	 14.6	 16.9	
Share	of	agricultural	worker	 3.4	 15.5	
Employment	rate	 65.6	 53.9	
Education	ratio	(Low/High)	 0.9	 2.7	
	 	 	
GDP	growth	1994-99	 2.5	 2.6	
GDP	growth	2000-07	 1.6	 2.0	
GDP	growth	2007-2011	 	-0.3	 	-3.0	
	

	

Table	4		Differences	in	the	neighbours’	covariates	of	our	sample	of	SER	

Spatial	lag	variables	(neighbors)	 Others	 SER	
GDP	pc	1988	 24940	 18728	(75%)	
Per	capita	ERP	 50	 165	
Fixed	investment	 10971	 10668	
High	education	 21.8	 17.9	
	

Therefore,	the	analysis	of	the	neighbor’s	effects	in	these	clusters	is	very	substantial,	in	order	to	assess	the	
size	 	 and	 the	 role	 of	 the	 estimated	 spillover	 effects.	 In	 this	 example	 we	 demonstrate	 that	 the	 size	 of	
spillover’s	 effect	 in	 the	 Southern	 European	 regions	 is	 relevant	 and	 it	 is	 an	 important	 dimension	 of	 the	
growth	effect	of	SF.	

We	define	the	spillover	effect	as	 the	difference	between	gross	marginal	effects	and	net	marginal	effects.	
The	gross	marginal	effect	is	represented	by	the	marginal	effect	we	can	detect	when	we	estimate	the	impact	
of	 the	 treatment	without	 controlling	 for	what	 happens	 in	 neighboring	 regions,	 so	we	 do	 not	match	 the	
treated	 regions	 with	 its	 neighbors.	 The	 net	 marginal	 effect,	 on	 the	 contrary,	 is	 the	 estimated	 marginal	
effect	when	we	match	with	neighbors	of	the	treated	region.	

For	a	given	level	of	the	treatment,	the	effect	of	the	policy	on	GDP	growth	rate	is	the	product	between	the	
amount	of	funds	per	capita	(t)	and	the	marginal	effect	(dy/dt	)	

	(16)		Effect	on	growth	rate	=	t	*	dy/dt	

(17)		Spillover	effects	=	Effect	on	growth	rate	with	interference	-	Effect	on	growth	rate	without	interference	

In	the	following	table	we	represent	an	empirical	case	considering	the	90th	percentile	of	the	distribution	of	
the	treatment	for	Structural	Funds	and	Cohesion	Fund	in	the	period	2000-2006.	The	percentile	is	associated	
with	the	value	of	215,	close	to	the	amount	of	per	capita	per	year	SF	in	SER	(see	tav.	3).	The	marginal	effects	
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are	in	table	1.	The	final	results	are	in	table	5:	the	net	effect	is	higher	than	the	gross	effect.	The	difference	is	
equal	to	-2.3%	cumulated	in	the	period,	almost	one	third	of	the	total	gross	effect.	

	

Table	5	–	Computation	of	spillover	effects	

Interference	 Type	of	
Marginal	
effect	

Estimated	
Marginal	
effect	
(a)	
	

Fund	
per	
capita	
	

Effect	on		
GDP	growth	rate	per	capita	

1999-2007	

No	 gross	 0.0004402	 215	 7.2%	
Yes	 net	 0.000336	 215	 9.5%	
Spillover	
effects	

gross	-	net	 	 	 -2.3%	

Yearly	
Spillover	
effects	

	 	 	 -0.3%	

	

	

7.	Conclusions	

The	analysis	shows	how	a	major	attention	to	the	role	of	spatial	spillover	effects	can	shed	new	insights	into	
the	measure	of	the	impact	of	ERP.	The	results	prove	that	the	dose-response	function	of	treatment	intensity	
on	the	regional	growth	is	non	linear	and	is	negative	(not	statistically	significant)	for	very	low	and	very	high	
level	of	regional	transfers,	in	line	with	Becker	(2010)	and	Cerqua	and	Pellegrini	(forthcoming).	

Moreover,	the	data	suggest	that	the	NUTS2	regions	with	lower	levels	of	funds	show	a	larger	impact	on	GDP	
per	head	than	the	NUTS2	regions	with	higher	levels	of	funds.		After	a	certain	intensity	threshold,	additional	
public	transfers	are	not,	on	average,	associated	with	significantly	higher	regional	GDP	growth	rate.	

Around	the	average	level	of	per	capita	SF	in	Southern	European	Regions	(the	Objective	1	regions),	the	dose-
response	 function	 is	 positive	 and	 statistically	 significant;	 the	 impact	 of	 ERP	 is	 for	 the	 average	 region	
positive,	and	reduces	regional	disparities.	

However,	the	net	effect	of	the	ERP,	considering	the	interactions	with	the	neighboring	regions,	is	for	those	
regions	 marginally	 higher	 than	 the	 gross,	 effective	 impact	 of	 ERP	 on	 GDP	 growth.	 Therefore,	 spatial	
spillovers	 are	 lower	 than	 the	 average.	 The	 reason	 is	 that	 the	 SER	 are	mainly	 in	 a	 spatial	 cluster	 of	 less	
developed	 regions,	 and	 the	 spatial	 interactions	 have	 only	 a	 less-than-average	 impact	 on	 the	 neighbors'	
growth.	

Spatial	spillovers	across	regions	appear	to	be	an	important	multiplicative	factor	that	increase	(or	decrease)	
the	 average	 impact	 of	 the	 European	 Regional	 Policy	 but	 also	 increase	 (or	 decrease)	 the	 impact	
heterogeneity	between	regions	with	a	different	level	of	per	capita	GDP.	

From	the	policymakers	point	of	view,	the	conclusion	is	that	the	positive	impact	for	growth	and	convergence	
in	Europe	coming	from	the	ERP	is	mitigated	by	both	an	excessive	level	of	ERP	for	some	(few)	regions	and	
the	presence	of	negative	spillover	effects	between	contiguous	low-income	regions.	
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APPENDIX	
Figure	1.	Geographical	distribution	of	European	regional	policy	intensity	in	the	period	2000-2006.	Structural	
Funds	transfer	payments	per	capita.	NUTS	Classification	2006.	

	

Source:	Our	calculations	on	data	of	European	Commission.	

	 	



	

16	
	

Figure	2-	Geographical	distribution	of	per	capita	GDP	growth	rate	by	regions	(1999-2007).	

	

	

Source:	Our	calculations	on	data	of	European	Commission.	

Figure	3-	Outcome	distribution	GDP	per	capita	growth	rate	1999-2007		

	

	

Source:	Our	calculations	on	data	of	European	Commission.	
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Figure	4	–	Estimates	without	interference	

	

	

Figure	5	–	Estimates	with	interference	
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