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Extended abstract 

Testing and accounting for cross-sectional dependence when evidence is found in favor of it 

has become a major research area in the econometrics literature. If a set of cross-sectional 

observations at a particular point in time are interdependent, they may not be treated as being 

independent, which is the standard if a linear regression model is estimated by ordinary least 

squares (OLS). For example, if a house is put for sale on the market and the owner, or a real 

estate agent representing the owner, uses information of houses with similar characteristics 

that are for sale or have been sold in the past to set the asking price, individual housing prices 

will no longer be independent of each other. Similarly, if a potential buyer of a house 

compares quality for money, that is, if he searches for the best possible set of housing 

characteristics within a particular search area given a particular budget, his bid for one house 

will depend on the asking price and characteristics of other houses. Finally, if housing prices 

of all houses go up and down along the business cycle, individual housing prices are not 

independent either, since they may be affected by a common factor, namely the business 

cycle. 

 The first type of cross-sectional dependence is known as (local) spatial dependence 

and the second type as (global) common factors. Both are also viewed as ‘weak’ and ‘strong’ 

cross-sectional dependence (Chudik et al., 2011), although according to Halleck Vega and 

Elhorst (2016) this terminology is misleading since it suggests that the latter is more 

important than the former, which is anything but the case. 

 Two statistics have been developed to test for cross-sectional dependence: the cross-

sectional dependence (CD) test of Pesaran (2004, 2015a) and the exponent of cross-sectional 

dependence test of Bailey et al. (2015). Both tests are based on a balanced spatial panel of N 

cross-sectional units over T time periods for a particular variable xit (i=1,…,N; t=1,…,T).  

The Pesaran (2015a, eq.10) CD test is defined as 

 

𝐶𝐷 =  √2 𝑇 𝑁(𝑁 − 1)⁄ ∑ ∑ �̂�𝑖𝑗
𝑁
𝑗=𝑖+1

𝑁−1
𝑖=1 ,        (1) 

 

where �̂�𝑖𝑗 denotes one of the N times N-1 mutual correlation coefficients between the time-

series of each pair of units i to j, and T is the number of observations on each unit. This two-
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sided test statistic has the limiting N(0,1) distribution as N and T go to infinity, and thus -1.96 

and 1.96 as critical values at the 5% significance level. One advantage of this test is that is not 

based on any (arbitrary) specification of a spatial weight matrix describing the spatial 

arrangement of the units in the sample. If the test statistic is significant, i.e. if it takes a value 

outside the interval (-1.96,+1.96), thereby corroborating the existence of cross-sectional 

dependence, the next question is whether it is weak, strong or both weak and strong. For this 

purpose, Bailey et al. (2015) developed the exponent α-test.  

 This test statistic takes a complicated mathematical form 

 

𝛼 = 1 + 1
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where 𝜎�̅�
2 part of the second right-hand side term is defined as 𝜎�̅�

2 = 1

𝑇
∑ (�̅�𝑡

𝑇
𝑡=1 − �̅�)2 and 

�̅� = 1

𝑇
∑ �̅�𝑡

𝑇
𝑡=1 . These formulas state that firstly, the cross-sectional average (�̅�𝑡) needs to be 

determined in each time period, secondly, the time average �̅� over these T cross-sectional 

averages and finally, the standard deviation 𝜎�̅�
2 of this time average.  

  Add description of the other variables in (2). 

The exponent α-test of Bailey et al. (2015) can take values on the interval (0,1]; 

𝛼 ≤ 1/2 points to weak cross-sectional dependence only, while 𝛼 = 1 points to strong cross-

sectional dependence. In between values indicate moderate to strong cross-sectional 

dependence and require additional research to discriminate between weak and strong cross-

sectional dependence. Evidence in favor of weak cross-sectional dependence (𝛼 ≤ 1/2) 

excludes strong cross-sectional dependence, but not vice versa. If evidence is found in favor 

of strong cross-sectional dependence and is subsequently accounted for, the residuals of xit 

modified for the contribution of strong cross-sectional dependence in the form of global 

common factors might still be due to weak cross-sectional dependence. This can be tested by 

running the CD test and the α-test on these residuals again. Halleck Vega and Elhorst (2016) 

provide an application to regional unemployment rates in the Netherlands. They find 

empirical evidence in favor of both local spatial dependence and global common factors, and 

demonstrate that both should be accounted for within one simultaneous framework to get 

unbiased results. 

Gauss code to calculate the CD and the α-tests are made available in an online 

appendix to Bailey et al.’s (2015) paper. As part of this paper, these routines have been 

reprogrammed in Matlab. They will be made available in due time. 

The disadvantage of the current versions of the CD test and the exponent α-test is that 

they have been developed for a balanced spatial panel only, i.e. for a cross-section of N units 

over T time periods. The application on housing prices presented in Bailey et al. (2016) as an 

empirical illustration of both tests also employs aggregated data only; 363 MSAs over the 

period 1975Q1-2010Q4 (T=144). However, most studies trying to explain housing prices are 

based on individual data. In this study, we have data on 163,323 housing transactions that 
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took place in the provinces of Groningen, Friesland and Drenthe located in the Netherlands 

over the period 2003-2014. The observed variables are the transaction price, the transaction 

price per square meter of living space, the number of weeks the house has been on the market, 

and a variable measuring the physical impact of a series of earthquakes due to gas extraction 

from the soil in the province of Groningen. These earthquakes are all relatively small in 

magnitude on the scale of Richter (smaller than 4), but when taken together they might have 

affected the transaction price. This is a topic for further research. First we need to find out 

whether global common factors and local spatial dependence are relevant extensions to a 

standard hedonic price model and need to be accounted for. 

This data set is anything but a balanced panel. The majority of houses has only been 

sold once during the observation period. We can aggregate the data to a smaller sample of G 

geographical units over T=12 years based on the location of the houses, and then calculate the 

statistics based on these G times T observations, but this might lead to a considerable 

aggregation bias since the number of observations Ngt (g=1,..,G; t=1,…,T) in each unit and 

each year differs considerably. Pairs of units having more observations should get a higher 

weight in both statistics than pairs of units having less observations. The aim of this paper is 

modify the formulas of the test statistics such that they can also be calculated based on an 

unbalanced spatial panel, and if possible based on individual data.  

  

The CD statistic 

Pesaran (2015, Section 29.8) explains how to modify the CD test when having an unbalanced 

panel due to missing observations in the time domain 

 

𝐶𝐷 =  √2 [𝑁(𝑁 − 1)]⁄ ∑ ∑ √𝑇𝑖𝑗�̂�𝑖𝑗
𝑁
𝑗=𝑖+1

𝑁−1
𝑖=1 .       (3) 

 

The following explanation is meant to provide a better understanding of the change made in 

equation (3) with respect to equation (1). The expression √2𝑇 𝑁(𝑁 − 1)⁄  is taken up before 

the summation signs in (1) since each correlation coefficient has the same weight. There are 

N(N-1) mutual correlation coefficients (which explains the division by N(N-1)) calculated 

over T observations (which explains the multiplication by T). The number 2 is added since the 

correlation matrix is symmetric; as a result it is sufficient to calculate the CD statistic over the 

upper triangular elements of the correlation matrix only and to multiply the outcome by 2 so 

as to represent the impact of the lower triangular elements.  

The square root of T before the summation signs in (1) is moved after them in (3), 

since the number of observations on which the correlation coefficients are based is different 

for every pair of units when having an unbalanced panel; if Ti and Tj (𝑇𝑖, 𝑇𝑗 ≤ 𝑇) denote the 

number of observations available for units i and j, then 𝑇𝑖𝑗 (𝑇𝑖𝑗 = 𝑇𝑖 ∩ 𝑇𝑗) denotes the number 

of observations each pair has in common. The calculation of the mutual correlation 

coefficients also needs to be changed, since they can only be determined over the number of 

observations each pair of units has in common. This gives 
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�̂�𝑖𝑗 =
∑ (𝑥𝑖𝑡−�̅�𝑖)(𝑥𝑗𝑡−�̅�𝑗)𝑡𝜖𝑇𝑖𝑗

√∑ (𝑥𝑖𝑡−�̅�𝑖)𝑡𝜖𝑇𝑖𝑗 √∑ (𝑥𝑗𝑡−�̅�𝑗)𝑡𝜖𝑇𝑖𝑗

, where �̅�𝑖 =
1

𝑇𝑖
∑ 𝑥𝑖𝑡𝑡∈𝑇𝑖

.      (4) 

 

From this equation it can be seen that observations in unit i are still used to compute the 

average of xi for that unit over time, even if it is not used to determine the correlation 

coefficient of unit i with another unit j. Furthermore, if a pair of units has more observations 

in common than another pair, the former pair also gets a higher weight in the determination of 

the CD statistic in (3). According to Pesaran (2015, p.793), this setup of the CD statistic 

“utilizes data in a more efficient way” (p.793). 

To be able to weigh �̂�𝑖𝑗 in the CD statistic when also having different numbers of 

observation in the cross-sectional domain, we first count the number of observations in 

different units in each year (Ngt). Zip-codes measured in four digits are used to determine the 

units. The three specified provinces in the Netherlands cover 948 of these zip-code areas. The 

CD statistics modified for the number of observations in each zip-code area and each year 

then takes the form 

 

𝐶𝐷 = ∑ ∑ ∑ √2𝑁𝑖𝑡𝑁𝑗𝑡/(∑ ∑ 𝑁𝑘𝑡𝑁𝑙𝑡 − ∑ 𝑁𝑝𝑡
2 )𝐺

𝑝=1
𝐺
𝑙=1

𝐺
𝑘=1 �̂�𝑖𝑗

𝐺
𝑗=𝑖+1

𝐺−1
𝑖=1

𝑇
𝑡=1  .    (5) 

 

In this modification not only the square root with respect to T but also with respect to N is 

moved after the summation signs. The mutual correlation coefficients can be calculated by 

(4), although xit for every i and t needs to be replaced by �̅�𝑖𝑡, which denotes the average over 

all individual housing prices in a particular unit and a particular time period. This is because a 

correlation coefficient between two unequal series of individual housing observations does 

not exist or cannot be determined.
1
 The principle to work with cross-sectional average within 

each unit in each time period is also used in Bailey et al. (2016). 

The product term 𝑁𝑖𝑡𝑁𝑗𝑡 in (3) denotes how many observations in both unit i and unit j 

in year t underlie the correlation coefficient �̂�𝑖𝑗. If both values of N are large (small), so will 

be this product term. If one N is large, but the other is small, the product term may still be 

limited. For example, it is better to have 2 observations in both units (product is 4) rather than 

3 observations in one unit and 1 in the other (product is 3). If no observations are available for 

a particular unit in a particular time period, the product term will be zero. This is in line with 

missing observations in the time domain set out in equations (3) and (4). 

The expression ∑ ∑ 𝑁𝑘𝑡𝑁𝑙𝑡 − ∑ 𝑁𝑝𝑡
2𝐺

𝑝=1
𝐺
𝑙=1

𝐺
𝑘=1   denotes the total sum of these product 

terms, where the contribution of product terms with respect to the own unit is subtracted, 

since its correlation coefficient is also excluded from the summation. Since the number of 

observations is different in every year, we cannot multiply this expression by T, as in (1), but 

                                                 
1
 This question has been posed on internet several times, but an adequate answer has not been provided. Some 

experiments with alternative measures also exhibited unsatisfactory outcomes. 
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need to repeat this calculation for every year, which explains the addition of the summation 

sign with index t. 

The results of this modified CD test for the four variables in our sample are reported in 

Table 1.  

Table 1. Results of the modified CD-test 

Variable Modified test 

Transaction price 620.2 

Transaction price per square 

meter living space 

2469.6 

Time on market 1640.7 

Earthquake indicator 2154.5 

 

The exponent α-test statistic 

When having an unbalanced panel both in the cross-sectional and the time domain, the term 

1

2

ln 𝜎�̅�
2

ln (𝑁)
 in the right hand side of the α-test statistic can easily be modified. 
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