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Abstract 

There is increasing interest in assessing whether growth of big cities has effects that differ from 

effects of growth of secondary towns, especially for impacts on poverty. It can be difficult to 

study these issues with typical sub-national economic data for administrative units because 

urban growth often occurs outside of the administrative boundaries of cities. An emerging 

literature therefore uses remote sensing to measure patterns of urban growth without being 

restricted by limitations of data for administrative areas. We add to this literature by combining 

remote sensing data on night-time lights for 41 big cities and 497 districts in Indonesia with 

annual poverty estimates from socio-economic surveys, using spatial econometric models to 

examine effects of urban growth on poverty during 2011-19. We measure growth on both the 

extensive (lit area) and intensive (brightness within lit area) margins, and distinguish between 

growth of big cities and of secondary towns. The extensive margin growth of secondary towns 

is associated with lower rates of poverty but there is no similar effect for growth of big cities. 

The productivity advantages of big cities and concerns about agricultural land loss to expanding 

towns and cities may imply that urban growth patterns favouring big cities are warranted, while 

on the other hand these new results suggest, from a poverty reduction point of view, that 

policies to favour secondary towns may be warranted. Policymakers in countries like Indonesia 

therefore face difficult trade-offs when developing their urbanization strategies. 
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1. Introduction 

There is increasing interest in assessing whether growth of big cities has different effects from 

the effects of growth of secondary towns. There are several reasons for this interest, especially 

in terms of impacts on the rural population, who are argued to benefit more from development 

in towns than in cities (Gibson et al, 2017). This unequal effect may be due to the cheaper cost 

of creating jobs in secondary towns than in big cities (Kanbur et al, 2019) and to the greater 

feasibility for rural migrants to settle into and find work in secondary towns than in big cities 

(Ingelaere et al, 2018). Hence, in at least some countries the growth of secondary towns appears 

to be more closely associated with poverty reduction than is the growth of big cities 

(Christiaensen et al, 2013; Gibson et al, 2017). 

 It can be difficult to study these issues because data on big cities and secondary towns 

are often lacking, either due to an unavailability of sub-national statistics in general, or because 

the data are for administrative units rather than functional urban areas (Olivia et al, 2018). For 

example, just four of the 21 Indonesian urban areas with population above one million (at the 

time of an earlier study rather than currently) are within a single administrative boundary, with 

the others spilling across boundaries (World Bank, 2015). Relatedly, Jones and Mulyana (2015) 

find that population growth rates for Java’s largest cities (Jakarta, Surabaya, and Bandung) 

between the 1990 and 2010 population censuses appeared to be relatively low due to the fact 

that their rapid growth was taking place in areas outside their official boundaries. 

A pertinent case study of how remote sensing data can help to overcome these limits on 

the evidence when one wants to contrast the effects of big city growth and secondary town 

growth comes from India. Night-time lights (NTL) from the Defense Meteorological Satellite 

Program (DMSP) were used by Gibson et al (2017) to construct estimates of the growth of 

secondary towns and of big cities, on their extensive margin (lit area) and their intensive margin 

(brightness within lit areas), which were then related to survey data on rural poverty. The 

reliance on NTL data was due to the lack of annual economic statistics at the city level in India. 

A key feature of the NTL data is that estimates are available each year. Furthermore, these 

estimates are for such small areas (either 30 arc-seconds, or 15-arc seconds, depending on NTL 

data source, which at the equatorial latitudes of Indonesia is equivalent to 0.93 km × 0.93 km, 

or 0.46 km × 0.46 km) that it is possible to build up from these pixels to define functional urban 

areas rather than just relying on the usual administrative units. 

Another feature of this Indian study was that spatial econometric models were used to 

recognize links between nearby areas; for example, the elasticity of own-region poverty with 

respect to the poverty rate of neighbouring regions was 0.3 and the poverty rate for neighbours 

was always a significant predictor of own-region poverty. These spillovers meant that some 

beneficial effects of urban growth on poverty reduction occurred indirectly and would not be 

seen with empirical methods that treat each area as independent of other areas. These spillover 

effects are also likely to be relevant in other countries. For example, the general profile of 
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poverty in Indonesia has a strong east-west dimension, with higher poverty rates in the eastern 

regions and lower rates in western regions. Moreover, even where there are locally high poverty 

rates in some western islands (such as Sumatra) that seem to violate this pattern those high 

poverty rates tend to be in the peripheral areas, such as off-shore islands (e.g. the Meranti 

Islands) or are found in some of the more remote parts of larger islands, such as Aceh. With 

these general patterns in mind, spatial spillovers may be expected to be an important part of 

the effect of various types of urban growth on poverty in Indonesia. 

 In light of previous successful use of the NTL data for examining how patterns of 

urban growth may relate to poverty reduction, we use updated NTL data and Indonesian annual 

survey data on poverty to examine relationships between urban growth and poverty reduction 

over the 2011-19 period. In order to allow comparison with existing evidence, urban growth is 

measured using satellite-detected night-time lights in as close a manner as possible to how it 

was done by Gibson et al (2017) for India. However, there is a notable difference in the spatial 

resolution of the available poverty measures, which are for 497 districts (Kabupaten and Kota) 

observed annually while the study in India was based on just 59 groups of districts that were 

observed four times from 1993 to 2012. To allow for this difference in spatial resolution of the 

available poverty data while still having settings that overlap with what was done in the analysis 

for India we only use the most permissive definition of secondary urban areas from Gibson et 

al (2017). Specifically, we use the luminosity threshold (20%) used to define secondary towns 

for the study in India. We also use an even less demanding urban threshold (15% of maximum 

luminosity) than previously used in the study for India, in order to allow some link with the 

prior literature while also tailoring the research approach to what may be the most appropriate 

urban measurements for the lower density areas of Indonesia.  

The rest of the paper is set out as follows: Section 2 uses descriptive data to show the 

trends and spatial patterns in poverty and urban development in Indonesia. Section 3 discusses 

the econometric methods. Section 4 has the results and Section 5 concludes. 

2. Descriptive Data on Poverty, Night-time Lights and Urban Development in Indonesia 

2.1 Poverty  

The poverty estimates at district level, where we use that term generically to denote the second 

sub-national level (so specifically for Indonesia the units are Kabupaten and Kota), are annual 

from 2011 to 2019. These are based on household consumption data collected in the SUSENAS 

survey. There may be a slight discontinuity in poverty estimates between 2014 and 2015, as 

data collection from 2011-14 used four sub-sample rounds that were pooled at the end of the 

year. In contrast, from 2015 onwards the March SUSENAS has a sample of about 300,000 

households, and is representative at Kabupaten and Kota level but the second sub-round of the 

survey that is fielded in September has a much smaller sub-sample that is not representative at 

the second sub-national level. The econometric modelling discussed below uses year fixed 
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effects which should soak up any variation due to these survey changes. 

These data are used in Figure 1 to show Indonesia’s record of poverty reduction over 

the last decade. The figure shows two indicators. The first is the headcount poverty rate—the 

percentage of the population who live in a household where the value of per capita consumption 

is below the poverty line. An issue with the headcount poverty rate is that the depth of poverty 

is obscured; the headcount rate is the same if, say, ten people out of a hundred live below the 

poverty line and in one case their consumption level is at $1.90 per person, for a $2 per person 

poverty line, and in the other case they are consuming just $1 per person. The headcount rate 

is the same even though the average consumption level of the poor is just one half of the poverty 

line in the second case but is 95% of the poverty line in the first case. So as a supplement we 

also show the trend in the poverty gap index, where this index is the ratio of the sum of poverty 

gaps (that is, the sum of all shortfalls from the poverty line) to the product of the poverty line 

times the total population. 

Figure 1: Trends in Average Poverty Rates for Indonesia, 2011-19 

 

 

 

 The average headcount poverty rate in Indonesia was just under 15% in 2011 and it 

had fallen to just under 12% by 2019 (Figure 1).1 This three percentage point reduction is due 

to falls in the poverty rate in most years; in six of the years shown there was a lower poverty 

rate than the year before. The only occurrence of the annual average headcount poverty rate 

rising was in 2015, when the rate was 13.3% compared to 13.0% in 2014. However, as noted 

                                       
1 The chart is based on averages across 497 districts, weighted by each district’s population each 

year. 
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above, 2015 is also a year when changes to the SUSENAS survey were implemented and these 

might contribute to the change in the poverty trend that year. The average poverty gap index 

also showed a rise in 2015, returning it to the values seen in 2012 and 2013. That rise was more 

persistent than the rise in the headcount index with the poverty gap index not returning to its 

2014 value until 2018. However, the main pattern apparent in Figure 1 is that the period we 

study has been marked by a steady decline in average poverty rates in Indonesia, which fell by 

about one-fifth of their initial value for the headcount index and by a smaller proportionate 

amount (and with more deviation from trend) for the poverty gap index. 

 The main variation in poverty in Indonesia is spatial rather than temporal. The spatial 

patterns are clearly seen in Figure 2a which maps the headcount poverty rate in each district 

(either Kabupaten or Kota) at the start of the study period, in 2011. A similar map for the 

poverty gap index is in Figure 2b. The much higher poverty rates in eastern areas are apparent, 

as are the low poverty rates in western regions such as Kalimantan, and much of Sumatra, 

except for the periphery such as Aceh or off-shore islands such as the Meranti Islands regency. 

For most areas, their poverty rates are similar to their neighbors, and so the spatial econometric 

methods that can recognize this non-randomness are likely to be important here.2 The poverty 

gap index shows similar broad patterns, although with a little less local variation, as can be 

seen, for example, by comparing the districts on Java in the two maps. 

Interestingly, the poverty gap index can reveal a payoff for policymakers in learning 

about the characteristics of the poor, such as where they are located. This interpretation occurs 

because the numerator is the bare minimum cost to eliminate poverty through targeted transfers 

(paying each person just enough to close their poverty gap), that are administratively costless 

and have no disincentive effects. In contrast, the denominator is the cost if everyone (poor or 

not) got a transfer whose value was equivalent to the poverty line, which might be an approach 

used by a policy maker who was entirely ignorant about the characteristics of the poor, but who 

knew the value of the poverty line so they wrote a cheque to everyone for that amount. Thus, 

finding isolated pockets of poverty in western Indonesia and targeting just those parts of that 

region would be cost-saving targeting, but in eastern Indonesia and particularly Papua, where 

there is widespread high rates of poverty and the poverty gap index is much higher, there is 

less saving from finely targeting and more generalized interventions might be warranted. 

  

                                       
2 Specifically, Moran statistics show the headcount index and poverty gap index have statistically 

significant (p<0.001) spatial autocorrelation in 2011; a pattern apparent in each of the years that we 

study through to 2019. 
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Figure 2a: Headcount Poverty Rate, 2011 

 

Figure 2b: Poverty Gap Index, 2011
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2.2 Night-time lights data and urban growth patterns 

Night-time lights data from the Defence Meteorological Satellite Program (DMSP) are widely 

used to study economic growth, especially of urban areas (see Gibson et al (2020) for a review). 

These data were originally processed by the National Oceanic and Atmospheric Administration 

(NOAA) and provide annual composites from 1992 onwards. The data provided are a 6-bit 

Digital Number (DN), ranging from 0 to 63 (26 = 64); higher numbers denote greater brightness. 

The data are presented on an output grid of 30 arc-seconds (Baugh et al, 2010). We use data 

from satellite F18, for 2011-13 (available here: https://eogdata.mines.edu/products/dmsp/#v4), 

and from F15 for 2014-19 (available here: https://eogdata.mines.edu/products/dmsp/#extend). 

If there are discrepancies between the NTL data coming from these two satellites, due to a shift 

in the observation time (see Ghosh et al, 2021 for details) and to any sensor differences between 

F15 and F18 the use of year fixed effects should account for these shifts.3 

 In the Gibson et al (2017) study on India, 47 big cities were defined, with population 

above one million in the 2011 census. The area of these cities in each year was measured with 

DMSP data, where cities were demarcated from other lit areas by using a luminosity threshold 

of 50 percent of the maximum DN value (where this particular value was based on cross-

validation exercises from Gibson et al (2015)).4 To measure lit area each year, an algorithm 

was used that started at the center of each big city, where lights should be brightest, and as it 

moved outwards and came across pixels less illuminated than the brightness threshold it 

searched in a different direction. If the algorithm found no contiguous pixels with DN values 

above the threshold, except those closer to the city center that it has already scanned over, it 

set a boundary for the big city area in that year. This approach provided a way to form 

functional urban areas for big cities, rather than relying on administrative area boundaries. 

 While the big cities were measured starting from a predefined brightly-lit point (such 

as the central railway station), secondary towns were measured in a different way in order to 

avoid having to enumerate each particular secondary town (which will tend to miss some if 

there is no complete list of them). All lit areas above thresholds of either 20% or 30% of the 

                                       
3 DMSP satellites have an unstable orbit, tending to observe earth earlier as they age. Satellite F15 

originally provided data for the annual composites from 2000-07 but as its time of observing the earth 

moved from early evening to late afternoon (due to the unstable orbit), the signal from another DMSP 

satellite (F16) that observed the earth later in the evening was used for forming the annual composites. 

This process of having an ever-earlier observation hour had advanced sufficiently that by 2014 the Earth 

Observation Group at the Colorado School of Mines created a pre-dawn set of observations from 

satellite F15 (noting that the satellites cross the same point on the earth’s surface twice per day, so a 

mid-to-late afternoon crossing time, which is useless for observing night lights, also has a corresponding 

pre-dawn observation time which can be used for observing night lights). While the source of pre-dawn 

(ca. 3am) lights is more likely to reflect public infrastructure, such as street lamps, compared to mid-

evening NTL data that will also show effects of some private activities, the same limitation is present 

in the VIIRS data, as the time that the Suomi-NPP satellite observes earth at night is at 1.30am.  
4 The use of a percentage of maximum DN threshold is to emphasize that the DN value is a measure 

of relative luminosity rather than an absolute scale (Doll, 2008; Gibson et al, 2020). 

https://eogdata.mines.edu/products/dmsp/#v4
https://eogdata.mines.edu/products/dmsp/#extend
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maximum luminosity, but excluding the area taken up by the big city in each year, were added 

together for each district. These 20% and 30% values were set so as to distinguish towns from 

the less brightly-lit villages and rural areas. With the two types of urban areas—big cities and 

secondary towns—defined, India’s urban growth was decomposed into two parts. The growth 

on the extensive margin was based on the expansion in lit area each year, while growth on the 

intensive margin was based on the average DN value (that is, on brightness) within the lit area. 

It turned out that in India, the dominant driver of rural poverty reduction was urban growth on 

the extensive margin, especially of the secondary towns. 

 While urban dynamics in Indonesia are unlikely to be the same as in India, and there 

are more abundant sub-national data for Indonesia, there are at least two reasons to follow the 

approach used in the previous study for India. First, it provides an opportunity to assess whether 

the pattern found in India, that it was growth on the extensive margin of secondary towns that 

seemed to have the most positive impact on poverty reduction, holds more broadly. Almost all 

countries in Asia, including Indonesia (see, e.g. Fitriani and Harris, 2011), have policymakers 

concerned about ‘urban sprawl’ and so the evidence from India that expansion in the area (the 

footprint) of secondary towns is beneficial in reducing poverty may be controversial as it goes 

against the anti-sprawl orientation of much of the literature. If we were to use a different 

approach to that used in India, and found that the results were not the same, it would remain 

unknown whether the results for India were a special case or whether the difference in results 

between India and Indonesia was just due to different methods being used.  

 The second reason for following the approach used in India is that it has been shown 

to provide useful information, even with the limitations of the NTL data (see Gibson et al, 2020 

for a review of the main measurement problems). The use of NTL data in economics is fairly 

recent, compared to the decades long experience with these data in remote sensing and urban 

studies, and sometimes there may be unrealistic expectations about what can be detected from 

space (see Gibson et al, 2021 for examples). So having an existing approach that has proved to 

be feasible with the available data is a good starting point. 

 Of course, there are also important differences between India and Indonesia, with a 

key one being that Indonesia has more finely-grained sub-national data. There are 497 districts 

with annual data on poverty from the SUSENAS survey. That is not too far away from the 

number of districts (ca. 550) that are in the states covered by the Gibson et al (2017) study for 

India, but the big difference is that the poverty estimates for India were aggregated into groups 

of about ten districts each (the NSS regions) as the Indian survey was not powered to provide 

district-level poverty estimates. Given this aggregation in the India study (and a higher overall 

population) there was less likelihood in the Indian study of having a region-year observation 

that had no lights recorded by the satellites (although the inverse hyperbolic sine transformation 

was still needed to deal with some zeroes in this study). In addition to having more spatially 

disaggregated units, compared to India there are parts of Indonesia (such as in the east) where 

there is lower population density. This matters because existing evidence from Indonesia (and 
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elsewhere) is that satellite-detected NTL data are less accurate as a proxy for economic activity 

(as seen with sub-national GDP) in low density rural areas, even though they can be highly 

accurate predictors in high density areas (Gibson et al, 2021; Gibson & Boe-Gibson, 2021). 

 The NTL data for Indonesia clearly show the effect on sample size of choosing a higher 

luminosity threshold for defining secondary towns. If thresholds of 20% and 30% are used, to 

match those used for India, there are either n=408 or n=349 districts that show up as having lit 

area in at least some year(s) between 2011 and 2019. Note that some of the 497 districts are 

entirely covered by big city lit area, and so have no area left to be allocated to secondary towns, 

but most of the districts with no secondary towns detected are unlit at the detection thresholds 

used. Thus, about one-quarter of the sample has neither secondary town lit area nor big city lit 

area, if a threshold of 30% of the maximum DN value is used. The less densely populated areas 

that appear unlit are likely to have high poverty rates, so it would be unwise to exclude them 

from the sample (or to include them with zeroes, which is possible using the inverse hyperbolic 

sine transformation, but in that case the modelling assumptions have more effect on the results) 

just for the reason of maintaining overlap with the previous study. 

 We therefore used thresholds of 20% and 15% of the maximum DN value, for creating 

secondary towns variables. With the 20% threshold, we overlap with the settings used for India, 

in order to compare the results, while the 15% threshold gives more non-zero observations, 

with n=436 districts having secondary towns detected in at least some years. These thresholds 

correspond to DN values of 9 and 13. While there may seem to be scope to set lower thresholds, 

there are at least two reasons to not do that. First, the DMSP data are bottom-coded and do not 

decline smoothly to zero, with instead a sharp break at DN=5 (which is equivalent to 8% of the 

maximum DN value).5 Second, setting a threshold greater than DN=5 and less than DN=9 will 

pick up any lit area rather than just secondary towns. For example, some rural villages are 

likely to be included, and so the variables will no longer measure different types of urbanization 

for comparing effects of growth in big cities versus growth in secondary towns, but instead any 

area that has night time lights visible from space will be included.  

 In terms of using a different data source, like the Visible Infrared Imaging Radiometer 

Suite (VIIRS) of instruments on the Suomi-NPP satellite that many consider more accurate 

than DMSP sensors (Elvidge et al, 2021) and that better predict local-level (county) economic 

activity elsewhere (Gibson and Boe-Gibson, 2021) there are some counter-arguments. When 

we use the grid of n=98,900 cells to compare DMSP and VIIRS (either masked means or the 

masked medians, which are the two best performing VIIRS data products for predicting local 

GDP in prior studies), there is no improvement in the detection of lit area. Specifically, with 

                                       
5 To show this, we divided Indonesia into n=98,900 cells that each aggregate 25 DMSP pixels 

(clipped to national borders so a few cells intersecting with borders and coastlines had less than 25 

pixels); no cells had DN=1, DN=2, or DN=3, and only 0.04% of cells had DN=4. Instead, the sharp 

jump from zero is at DN=5 (1.71% of cells, or 42-times as many as at DN=4). This exercise also 

showed how prevalent are the unlit areas, with 82% of all cells being completely unlit (i.e. DN=0). 
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VIIRS, 84.8% of cells had masked-mean radiance=0 and for the masked-median it was 84.9% 

(compared with 82% zero with DMSP, where all comparisons are for 2012, the year with the 

most satellite-detected night light for Indonesia). In other words, in our application the problem 

of zeroes would be more prevalent with VIIRS than with DMSP data. Moreover, previous 

results for Indonesia suggest VIIRS data are no better for predicting GDP in rural areas than 

are DMSP data (Gibson et al, 2021) and so using VIIRS is unlikely to offer an improvement. 

Also, there is a reduced sample size with VIIRS, which is unavailable before April 2012 and 

has no stray-light corrected version until 2014. So one-third of the time-series could be lost, if 

the stray-light corrected VIIRS data were to be used, as they only allow a 2014-19 time-series. 

 With 15% and 20% luminosity thresholds set as the basis for measuring secondary 

towns the last data task concerns the measurement of the big cities. We use the 41 big cities in 

Indonesia whose area expansion over time (for the 1992-2012 period) has previously been 

studied by Olivia et al (2018). These cities had an average population (in 2013) of 0.9 million. 

Note that it is important that the big cities are defined according to some criteria (such as their 

population) at the beginning of the sample period rather than at the end, as factors that make a 

secondary town grow so quickly that it becomes a big city would otherwise wrongly get 

attributed to the big city component of growth, when in fact, such an urban area started out as 

a secondary town (this issue can be thought of in terms of survivorship bias). Figure 3 provides 

a location map for these 41 urban areas, and classifies them by population. These areas are 

located in 27 different provinces and include provincial capitals and other major cities. 

Figure 3: The Locations (and Size) of the Big Cities 

 

 The trend rates of growth of the big cities and the secondary towns (with results for 

towns defined at both the 15% and the 20% of maximum luminosity thresholds) are reported 

in Table 1. The lit area of big cities grew at a trend rate of 8.1% per annum, implying that area 

of these cities doubles in just under a decade. To provide some background, the results in Olivia 

et al (2018) showed annual growth rates of 13.6% for these cities from 1992 to 1997 but then 
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a sharp slowdown, with annual increases of just 3% from 1998-2012. Thus the period that we 

study includes somewhat of a return to fast rates of urban growth in Indonesia. The secondary 

towns are expanding their lit area even faster, with trend rates of increase of 19% per annum 

(or 18% if using the slightly more restrictive 20% luminosity definition of secondary towns). 

The second feature of the results in Table 1 is that the brightness of both the cities and 

the secondary towns is increasing much less rapidly than is lit area. The average brightness of 

the towns rose by 3.5% per annum, while for the big cities it rose by just 0.1% per annum. The 

sum of lights combines lit area and average brightness, and shows that secondary towns lights 

were growing by 23% per annum (so doubling every three years) while big city lights were 

increasing by 8.3% per annum. In other words, the secondary towns appear to be an ever more 

visible part of the urban landscape in Indonesia. 

Table 1: Trend Annual Growth Rates for Big Cities and Secondary Towns 
 

 Big 

Cities 

 Secondary Towns 

  15% threshold 20% threshold 
     

Lit area 0.081  0.187 0.181 

 (110.9)***  (4.90)*** (4.77)** 

Mean brightness (DN value) of lit area 0.001  0.035 0.034 

 (2.55)**  (4.78)*** (4.06)*** 

Sum of lights 0.083  0.230 0.219 

 (86.4)***  (5.29)*** (4.78)*** 

Notes: The inverse-hyperbolic sine (equivalent to a logarithm) of the lights variable is regressed on a time trend, 

on dummy variables for each district, and on a satellite fixed effect (for the shift from using the signal from F18 

to using the F15 signal). The coefficients (× 100) are approximately percentage changes. The secondary towns 

are based on a percentage of maximum luminosity threshold of either 15% or 20% and big cities use a threshold 

of 50%. The sum of lights is the product of lit area and the average DN value within the lit area.  t-statistics in 

( ) from robust standard errors clustered at district level, ***, **,* for p<0.01, 0.05, 0.1. 

 

 While the secondary towns are detected in almost all districts, the same is not true for 

the big cities, given that there are only 41 of them. While our modelling allows spillovers for 

both big cities and secondary towns, a way to link the big cities with the districts is also needed 

(whereas this link is automatic for the own-district secondary towns). The distance from the 

geographic centroid of each district to the brightest point of each big city (that is, the starting 

point, like the central railway station, used in the algorithm that ‘grows’ the city outwards until 

it reaches pixels that are less brightly lit than the luminosity threshold) was calculated. The 

inverse of that distance is then used as a weight to form a weighted average of exposure to the 

big city variables (lit area and average DN value within the lit area) for each district. In other 

words, effects of big city growth on a particular district are more heavily weighted to patterns 

shown by the nearby big cities (such as their lit area expansion rates) while patterns for big 
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cities that are further away from that district will have less effect on this weighted average.6 

3. Econometric Methods 

A general-to-specific spatial econometric regression modelling strategy is used. The Figure 2 

maps of the district-level poverty rates suggest considerable non-randomness over space, with 

nearby areas having similar poverty rates. The spatial econometric models can account for this 

pattern, and allow for spillovers where urban growth in one place might affect poverty in many 

districts. The district-level vector of poverty measures for date t (=1,…,T) and for district i is 

denoted 𝑃𝑖𝑡 and the matrix of urban growth explanatory variables based on the night-time 

lights is 𝑋𝑖𝑡.  Specifically, the poverty measures are the two mapped in Figure 2. The 

combinations of big city lit area and average DN value, and secondary town lit area and average 

DN value are in the 𝑋𝑖𝑡 matrix. We first use a specification with lit area variables, then one 

with the average DN values, then one using both lit area and DN values, and finally one using 

the sum of lights (the product of lit area and average DN values within the lit area). The various 

combinations allow the effects of urban growth on the extensive margin to be distinguished 

from the effects of growth on the intensive margin.  

 The most general starting model for these regressions is a Spatial Autoregression with 

Autoregressive Errors (SARAR): 

𝑃𝑖𝑡 = 𝛿𝑊𝑃𝑖𝑡 + 𝑋𝑖𝑡𝛽1 + 𝑊𝑋𝑖𝑡𝛽2 + 𝜇𝑖 + 𝜃𝑡 + 𝜀𝑖𝑡       (𝑖 = 1, ⋯ , 𝑁; 𝑡 = 1, ⋯ , 𝑇)   (1a) 

𝜀𝑖𝑡 = 𝜌𝑊𝜀𝑖𝑡 + 𝑣𝑖𝑡       (1b) 

Here the spatial weighting matrix W describes the structure of spatial relationships between the 

497 districts in Indonesia. The W matrix has zeros along the main diagonal, as no district is its 

own neighbor, while (to allow for geographic spillover effects) the off diagonals are set to unity 

for immediate neighbors and zero otherwise using Queen contiguity weights. With this model, 

changes in an explanatory variable in a particular district not only affect the poverty rate in that 

district, but also in other districts. If the spatial lag of the dependent variable is statistically 

significant (that is, if the δ coefficient is non-zero) there is a global spillover where a shock in 

one spatial unit propagates through to all of the other spatial units rather than just to nearby 

units (LeSage and Pace, 2009).7 In other words, a weights matrix with first-order neighbours 

need not restrict the scope of the spillovers that are estimated from the empirical patterns in the 

data. On the other hand, if δ is zero and β2 is non-zero then the spillovers only occur locally. 

 The error term in equation (1) has three components: i represents any time-invariant 

                                       
6  This market-potential approach to linking the big cities to the districts is not the source of the 

spillovers, if any exist. Instead, the spillovers are estimated in equivalent ways for both the secondary 

towns and the big cities, in the spatial econometric modelling framework described in the next section. 
7 This is akin to how a first-order lagged dependent variable in time-series econometrics is a convenient way to 

represent an infinite distributed lag of the independent variables. 
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fixed effects, that will reflect latent factors specific to a particular district that are relatively 

constant over time. For example, topography or remoteness (such as being an off-shore island) 

will affect poverty and also are likely to be related to urbanization. The term 𝜃𝑡 represents 

time fixed effects, that are specific to any of the survey years studied here (2011 to 2019), such 

as any differences in poverty rates across years that stem from the change in survey 

organization (in 2014 and earlier there were four rounds of data collection per year but from 

2015 onwards it is one main round and a smaller supplementary round of fieldwork). Finally, 

the remaining part of the error, 𝜀𝑖𝑡 is allowed to have a potential correlation, shown by the ρ 

coefficient, with the error terms for nearby districts based on the spatial lag of the errors, 𝑊𝜀𝑖𝑡. 

The resulting panel data model with spatially correlated error components (Kapoor et al, 2007) 

should provide inferences that account for any spatial autocorrelation in the errors. 

 The model set out in equations (1a) and (1b) is a very general one that nests several 

other commonly used models. If 𝜌 = 0 the resulting model is a spatial Durbin model that has 

lags of the outcome variable and of the right-hand side variable (which was the model used by 

Gibson et al (2017) in their study for India). A spatial autocorrelation model results if 𝛽2 = 0, 

which then gives a model with spatial lags of the dependent variable and spatial lags of the 

errors. The spatial auto-regressive model (aka the spatial lag model) results if 𝛽2 = 𝜌 = 0, 

where only the dependent variable is spatially lagged. A spatial error model results if just errors 

are spatially lagged (so 𝛿 = 𝛽2 = 0). Finally, a model without any spatial terms would be 

appropriate if the restrictions that 𝛿 = 𝛽2 = 𝜌 = 0 are not rejected (or when viewed the other 

way, these restrictions highlight how specialized is the typical aspatial approach which requires 

many parameters to be set to zero). 

A feature of these models, other than the spatial error model, is that the spatial lags 

imply that there are spillovers. Specifically, shocks to the right-hand side variable in one district 

may propagate through the observations for other districts and cause a total impact that may 

exceed the initial direct impact given by the 𝛽1  coefficient. These total impacts can be 

decomposed into direct and indirect components (LeSage and Pace, 2009). This decomposition 

relies on estimating a 497 × 497 matrix of cross-partial effects (given there are 497 districts). 

Each cell in this matrix shows the relationship between poverty in district i and the change in 

the urbanization indicator in the jth district. However, this additional, post-estimation, step is 

only needed if either the lags of the dependent variable or of the independent variables are 

statistically significant (as lags of the errors do not generate spillovers). 

 The two final data steps before reporting the estimated results deal with zeroes in the 

night lights data and with standardization of variables to enhance comparability of coefficient 

estimates. The presence of zeroes prevents taking the logarithms of the variables, so an inverse-

hyperbolic sine transformation is used instead, which is equivalent to logarithms for the non-

zero values but allows observations with a zero to be included as well. There are sensitivity 

results from Gibson et al (2017) for India showing the inverse hyperbolic sine transformation 
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gives identical elasticities to what is obtained using logarithms. The second data transformation 

was to standardize all of the variables, which aids comparability given that some are in units 

of square kilometers and others are in DN values, while standardization allows the coefficients 

to be interpreted in terms of equivalent sized effects (standard deviation changes). 

4. Results 

The results of estimating equation (1) with the two poverty rates are reported in Table 2. The 

restrictions to move from this general SARAR model to simpler models are not consistent with 

the data (generally the restrictions are rejected at the p<0.01 level, based on the tests in the last 

four rows of the table). The only exception to this is for the model of the poverty gap index, if 

the specification uses average DN values within the lit area as the only measures of urban 

growth (column (6)). In that case, the restrictions to go from the SARAR model to the spatial 

autocorrelation model would be consistent with the data. However, the specifications that use 

the average DN values, rather than using either the lit area or the sum of lights, are generally 

less consistent with the data and so the evidence in column (6) that could be used to suggest a 

simpler model nested within the SARAR model can be discounted somewhat.  

The result that urban growth on the extensive margin (lit area) is more closely related 

to poverty than is intensive margin growth (brightness within lit area) corroborates the finding 

for India reported by Gibson et al (2017). This result is seen clearly in column (3), for the head-

count poverty index, which has both lit area and average DN values included and it is only the 

lit area variables that are statistically significant. Likewise, if the results in column (1) are 

compared with those in column (2), or column (5) versus column (6), there are significant 

relationships between urban lit area and poverty while the corresponding relationships between 

poverty and the average DN values are not statistically significant. Therefore, when we 

consider the substantive significance of the results, we concentrate on columns (1), (4), (5) and 

(8) which are the specifications that use either lit area, or the sum of lights.  

 In terms of direct effects, big city lit area (and the sum of lights when considering the 

headcount index) is positively associated with poverty rates while secondary town lit area or 

the sum of lights for secondary towns is negatively related to poverty rates. The differential 

effect of big city growth compared to secondary town growth is especially clear for the 

headcount index (see columns (1) and (4)), while the evidence is somewhat less precise for the 

poverty gap index (see columns (5) and (8)). Of course with spatial lags of the urban growth 

variables and of poverty rates (in all specifications for the poverty gap index, and when using 

the sum of lights for the headcount index) also being statistically significant, the total impact 

on poverty of big city urban growth and secondary town urban growth may be quite different 

to what the direct effects (given by the 𝛽1 coefficients) show. The other notable feature of the 

coefficients is the statistically significant spatial lag of the error terms, reflecting the spatially 

non-random pattern of poverty in Indonesia shown in the Figure 2 maps.  



Table 2: Effects of Big City Lights and Secondary Town Lights (at 15% threshold) on Poverty Rates: SARAR Model 

 ---------------Headcount Poverty Rate--------------- ------------------Poverty Gap Index------------------ 

 (1) (2) (3) (4) (5) (6) (7) (8) 

Big city lit area  0.080  0.072  0.203  0.238  

 (2.00)**  (1.65)*  (2.21)**  (2.39)**  

Big city average DN value   0.048 0.018   0.008 -0.078  

  (1.40) (0.47)   (0.10) (0.90)  

Big city sum of lights    0.155    0.138 

    (3.91)***    (1.51) 

Secondary town lit area  -0.014  -0.032  -0.016  -0.007  

 (3.09)***  (2.54)**  (1.60)  (0.25)  

Secondary town average DN value   -0.010 0.019   -0.017 -0.010  

  (2.41)** (1.57)   (1.74)* (0.36)  

Secondary town sum of lights    -0.011    -0.018 

    (2.46)**    (1.73)* 

W × Big city lit area  -0.013  -0.013  -0.020  -0.020  

 (2.41)**  (2.17)**  (1.66)*  (1.53)  

W × Big city average DN value  -0.017 0.007   -0.045 -0.008  

  (0.70) (0.27)   (0.83) (0.14)  

W × Big city sum of lights    -0.019    -0.029 

    (2.32)**    (1.65)* 

W × Secondary town lit area  -0.008  -0.011  -0.010  -0.016  

 (2.97)***  (1.41)  (1.68)*  (0.93)  

W × Secondary town average DN value  -0.008 0.003   -0.010 0.006  

  (3.18)*** (0.40)   (1.83)* (0.35)  

W × Secondary town sum of lights    -0.007    -0.009 

    (2.84)***    (1.53) 

Spatial lag of poverty rate (delta) 0.012 0.012 0.012 0.015 -0.060 -0.060 -0.060 -0.060 

 (1.43) (1.38) (1.33) (1.70)* (4.08)*** (4.06)*** (4.09)*** (4.10)*** 

Spatial lag of error (rho) 0.106 0.106 0.107 0.104 0.094 0.094 0.094 0.094 

 (15.72)*** (15.41)*** (15.54)*** (15.02)*** (9.20)*** (9.18)*** (9.21)*** (9.27)*** 

Tests of parameter restrictions to nest:         

 spatial Durbin model (ρ = 0) 247.2*** 237.6*** 241.6*** 225.5*** 84.6*** 84.3*** 84.9*** 85.9*** 

 spatial autocorrelation model (β2 = 0) 19.5*** 10.8*** 18.5*** 18.6*** 7.6**   4.2 8.3* 7.1** 

 spatial lag model (β2 = ρ = 0) 260.6*** 264.9*** 262.6*** 247.0*** 90.6*** 91.6*** 91.8*** 92.6*** 

 spatial error model (β2 =  = 0) 21.4*** 11.9*** 20.5*** 20.5*** 23.4*** 21.9*** 24.1*** 23.7*** 

Notes: W is the spatial weights matrix. Sum of lights is product of lit area and average DN value within lit area. All variables standardized (so intercepts not shown as centred at zero); all 

models include fixed effects for each district and for each year, z-statistics in ( ), ***,**,* for p<0.01, 0.05, 0.1. N=4473. 



4.1 Average Direct, Indirect and Total Effects 

The results from Table 2 that the restrictions on the SARAR models were not consistent with 

the data imply that no simplification of the specification is possible. This has implications for 

the substantive interpretation of the results. A feature of the SARAR model is that the total 

effect of changes in an X variable—such as growth in big cities or in secondary towns—may 

be quite different to what is shown by 𝛽̂1 since a local change in the poverty rate (due to some 

change in the X variable) affects poverty rates of neighbours, which, in turn, affects the poverty 

rates of their neighbours, including the original district. These spillover and feedback effects 

let us decompose effects of urban growth on poverty into direct and indirect components. To 

see how, note first that equation (1) can also be written as (in matrix notation and dropping the 

t and i subscripts and ignoring the spatial error term which does not affect these spillovers): 
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Following Elhorst (2012), the partial derivatives with respect to the k’th explanatory 

variable can then be written as (noting that the diagonal elements of W are zero):  
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(Here 𝛽1𝑘  is the kth element of the vector 𝛽1 and similarly for 𝛽2𝑘 .) The total marginal 

effect of 𝑋𝑘 on the poverty measure 𝑃 in (3) includes both direct and indirect effects which 

will vary across districts as a result of the spatial feedbacks. The spatial panel estimator that 

we use follows LeSage and Pace (2009) in reporting a single direct effect, that averages the 

diagonal elements of the matrix in (3) and a single indirect effect that averages the row sums 

of the non-diagonal elements of that matrix. Note that indirect effects arise not only from a 

region’s neighbours when 𝛽2𝑘 ≠ 0, but also from (potentially) all districts through the spatial 

autocorrelation when 𝛿 ≠ 0. The average total effect combines the direct and indirect effects.  

 The calculation of the effects based on equation (3), and the decomposition into direct 

and indirect effects, is reported in Table 3. The direct effects are similar to the coefficients in 

columns (1), (4), (5) and (8) of Table 2, for the variables that are not spatially lagged. The 

direct effect is that poverty is higher if big city lit area (or the sum of lights) grows faster, while 

poverty is lower with faster growth of secondary town lit area or the sum of lights for secondary 

towns. It is for the headcount index that these effects are most apparent. However, there are 

also indirect effects that come both locally (as 𝛽2 ≠ 0) and globally (as 𝛿 ≠ 0, except for 

the headcount index model when using lit area). For both big city urban growth and secondary 

town urban growth, the faster is growth (in lit area or in the sum of lights), the lower the poverty 

rate coming through the indirect channel. In other words, districts benefit indirectly from faster 

growth in either type of urban area, where these indirect effects come via spillovers from other 

districts. The total effect is therefore the sum of the direct and indirect effects, which offset 
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each other for big city growth while they add together for secondary town growth. In other 

words, secondary town growth—either in terms of lit area or the sum of lights—is negatively 

related to poverty rates while big city growth has no similar poverty-reducing effect. 

Table 3: Average Direct, Indirect and Total Impacts of Big City and Secondary Town 

Urban Growth 

 Headcount Poverty Index Poverty Gap Index 

 Lit Area Sum of lights Lit Area Sum of lights 

Average direct effects     

Big city lit area (or sum of lights) 0.080 0.154 0.210 0.146 

 (1.98)** (3.89)*** (2.26)** (1.57) 

Secondary town lit area (or sum of lights) -0.014 -0.011 -0.014 -0.016 

 (3.14)*** (2.53)** (1.44) (1.58) 

Average indirect effects     

Big city lit area (or sum of lights) -0.051 -0.068 -0.103 -0.120 

 (2.23)** (2.04)** (2.34)** (2.00)** 

Secondary town lit area (or sum of lights) -0.033 -0.031 -0.028 -0.025 

 (2.96)*** (2.83)*** (1.55) (1.38) 

Average total effects     

Big city lit area (or sum of lights) 0.029 0.086 0.107 0.026 

 (0.61) (1.62) (1.31) (0.29) 

Secondary town lit area (or sum of lights) -0.047 -0.043 -0.043 -0.041 

 (3.47)*** (3.16)*** (1.97)** (1.90)* 

Notes: Average direct effects, indirect effects and total effects are based on equation (3) using the decomposition 

of LeSage and Pace (2009) and are calculated from the models reported in Table 2. Secondary towns are based 

on a 15% luminosity threshold. z-statistics in ( ), ***, **,* for p<0.01, 0.05, 0.1. 

 

4.2 Sensitivity analyses 

The basic pattern of results, that urban growth in secondary towns, especially on their extensive 

margin, is associated with lower poverty rates, while growth in big cities is not, repeats what 

was found for India by Gibson et al (2017). A set of sensitivity analyses also show this pattern. 

The first sensitivity analysis uses an inverse distance weights matrix rather than the contiguity 

weights used for the results in Tables 2 and 3. For the headcount poverty rate, the outcomes of 

the tests of restrictions on equation (1) to derive the various nested models are the same as what 

was found in Table 2; the SARAR specification is the preferred model (Appendix Table 1). A 

similar coefficient pattern is seen with both sets of weights, with a positive relationship between 

the big city growth and the poverty rate and a negative relationship between secondary town 

growth and the poverty rate. The spatial lag terms are all negative, except in column (3), which 

was the same pattern found when using the contiguity weights in Table 2. For the poverty gap 

index, a spatial Durbin model would be a data-acceptable simplification of the SARAR model 

because the restriction that 𝜌 = 0 is not rejected, which is one difference from results with a 

contiguity weights matrix. 

The average direct, indirect, and total effects from the models using inverse distance 
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weights are reported in Appendix Table 2. For three of the four sets of results (the exception is 

using lit area and the headcount index), the significant negative relationship between the total 

effects of secondary town growth and poverty seen in the main results is also found. For all 

four sets of results, big city growth has positive but imprecisely estimated effects on poverty. 

The total effects were also calculated using a spatial Durbin model for the poverty gap index, 

as the restrictions to nest this model were not rejected (see Appendix Table 1). Using lit area, 

the total effects were 0.26±0.11 for big cities and ˗0.26±0.13 for secondary towns, so the total 

effects on poverty for growth in the two types of urban areas are essentially equal and opposite. 

The SARAR model showed the same, but with fractionally smaller effects, of +0.25 and ˗0.25. 

Thus, the type of spatial weights matrix does not seem to alter the broad pattern of the results. 

 The second sensitivity analysis, whose results are reported in Appendix Table 3, uses 

a 20% luminosity threshold for defining secondary towns. The results for big cities are largely 

unchanged, and still show positive relationships between poverty and indicators of city growth. 

However, the results for the indicators of growth of secondary towns become imprecise, most 

likely due to the higher proportion of zeros when the higher luminosity threshold is used for 

defining secondary towns. 

 The last sensitivity analyses use aspatial models (reported in Appendix Table 4 and 5). 

While aspatial models are not consistent with the data (given rejection of nesting restrictions), 

such models are widely used and so results for these have been estimated to provide some 

linkage for readers unfamiliar with spatial econometric models. These models also show 

positive, and statistically significant, relationships between poverty and big city growth. The 

relationships of poverty with secondary town growth are negative but only become statistically 

significant when districts that had no secondary town lights detected are dropped from the 

estimation sample. Overall, the sensitivity analyses show similar qualitative effects as the main 

analysis and highlight the distinctive effects of big city growth versus secondary town growth. 

5. Discussion and Conclusions  

The empirical results reported here indicate that it is urban growth in the secondary towns of 

Indonesia rather than in the big cities that is associated with lower poverty rates. The empirical 

relationships that are reported control for time-invariant unobserved features of each district, 

and for space-invariant features of each time period, in order to rule out confounding due to 

unobservable factors. The estimation framework also allows for quite general spatial spillovers 

and so the key findings should be as reliable as can be hoped for in studies using observational 

data. Moreover, the patterns found here are fairly similar to the patterns found for India, using 

a similar approach, which should increase confidence in the results. However, the implication 

that poverty reduction might be best achieved through the growth of secondary towns rather 

than big cities, and particularly growth on the extensive margin (that is, area expansion), may 

not be popular. There are several reasons for policy makers to prefer promoting the growth of 
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big cities rather than growth of secondary towns and so it will take careful consideration of the 

various trade-offs entailed by the different forms of urban growth. 

For example, there is a large literature on the productivity advantages of big cities 

compared to smaller towns and non-urban areas. A meta-analysis of 34 studies reports that the 

elasticity of output (wages) averages 0.08 (0.03) with respect to city size (Melo et al, 2009). 

These elasticities indicate that workers are more productive (based on the fact they are paid 

more and marginal productivity determines wages) in bigger cities, and this higher productivity 

yields more valuable output. A large literature attempts to uncover sources of this productivity 

advantage, which may partly reflect the fact that workers in big cities tend to have higher skills 

(Glaeser and Maré, 2001). Relatedly, firms in big cities have higher propensities to introduce 

product and process innovations and to undertake research and development activities (Chen 

et al, 2021). Given these features, policy makers often see big cities as being engines of growth 

for the country as a whole and so supporting the growth of secondary towns in order to help 

with poverty reduction may be inconsistent with a policy orientation revolving around big cities 

as engines of growth. 

Another policy sphere where potential trade-offs will need to be considered concerns 

land-use policy and the vexed questions of ‘urban sprawl’ and preservation of cultivated land. 

Indonesia’s rice self-sufficiency strategy is an important element in food security policy, with 

maintaining sufficient Sustainable Food Agricultural Land (LP2B) by restricting agricultural 

land conversion a key part of this strategy (Rondhi et al, 2019). All else the same, urbanization 

occurring in big cities would seem to have a less negative impact on the amount of agricultural 

land remaining than if an equivalent number of people were housed in secondary towns, due 

to the higher density of the big cities. However, the record from elsewhere, and especially 

China were these issues are intensively studied, is that growth of big cities relative to growth 

of towns can alleviate the loss of cultivated land in some periods, but in other periods city 

growth is a net contributor to cultivated land loss (Deng et al, 2015). Hence this is an issue that 

is likely to require more study in the Indonesia context. A related issue concerns non-urban 

uses of land for ecosystem services, broadly defined, such as hydrological services, by 

maintaining some forest cover in urban catchments to reduce flood risk (Remondi et al, 2016). 

It is unclear which type of urban growth—in big cities or in secondary towns—would most 

enhance resilience to natural disasters. All of these considerations need to be factored in, for 

evaluating the evidence that in terms of poverty reduction, expansion of secondary towns in 

Indonesia seems to be more effective than is the growth of big cities. 
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Appendix  

Appendix Table 1: Effects of Big City Lights and Secondary Town Lights (at 15% threshold) on Poverty Rates: SARAR Model with Inverse Distance Weights Matrix 

 ---------------Headcount Poverty Rate--------------- ------------------Poverty Gap Index------------------ 

 (1) (2) (3) (4) (5) (6) (7) (8) 

Big city lit area  0.115  0.105  0.260  0.284  

 (2.75)***  (2.17)**  (2.98)***  (3.06)***  

Big city average DN value   -0.017 -0.041   -0.015 -0.109  

  (0.46) (1.05)   (0.17) (1.22)  

Big city sum of lights    0.191    0.158 

    (4.91)***    (1.83)* 
         

Secondary town lit area  -0.010  -0.022  -0.015  -0.008  

 (2.29)**  (1.81)*  (1.50)  (0.27)  

Secondary town average DN value   -0.006 0.012   -0.013 -0.008  

  (1.36) (1.04)   (1.31) (0.30)  

Secondary town sum of lights    -0.007    -0.016 

    (1.63)    (1.61) 
         

W × Big city lit area  -0.480  -0.233  -0.269  -0.365  

 (3.36)***  (3.84)***  (1.48)  (1.78)*  

W × Big city average DN value  -0.272 0.509   -0.128 0.101  

  (0.69) (3.11)***   (0.26) (0.18)  

W × Big city sum of lights    -0.712    -0.207 

    (3.86)***    (0.74) 
         

W × Secondary town lit area  -0.245  0.901  -0.704  0.550  

 (1.29)  (3.98)***  (1.80)*  (0.84)  

W × Secondary town average DN value  -1.028 -1.386   -1.077 -1.507  

  (5.38)*** (6.03)***   (2.82)*** (2.34)**  

W × Secondary town sum of lights    -0.540    -0.874 

    (2.82)***    (2.13)** 
         

Spatial lag of poverty rate (delta) 2.104 1.951 0.420 2.442 0.948 0.950 0.915 0.966 

 (13.73)*** (9.92)*** (4.03)*** (20.69)*** (5.52)*** (5.22)*** (4.69)*** (5.83)*** 

Spatial lag of error (rho) 1.871 2.099 4.356 1.067 0.182 0.189 0.215 0.154 

 (14.96)*** (8.26)*** (21.57)*** (11.70)*** (0.67) (0.69) (0.76) (0.58) 

Tests of parameter restrictions to nest:         

 spatial Durbin model (ρ = 0) 223.8*** 68.2*** 465.2*** 136.9*** 0.5 0.5 0.6 0.3 

 spatial autocorrelation model (β2 = 0) 14.2*** 28.9*** 75.2*** 27.2*** 5.5* 8.0** 10.9** 5.3* 

 spatial lag model (β2 = ρ = 0) 266.5*** 106.8*** 689.0*** 165.0*** 5.9 8.2** 10.9* 5.7 

 spatial error model (β2 =  = 0) 193.0*** 154.5*** 115.9*** 450.6*** 36.8*** 39.2*** 43.0*** 38.8*** 

Notes: W is the (inverse-distance) spatial weights matrix. Sum of lights is product of lit area and average DN value within lit area. All variables standardized (so intercepts not shown as centred at 

zero); all models include fixed effects for each district and for each year, z-statistics in ( ), ***,**,* for p<0.01, 0.05, 0.1. N=4473. 



 

Appendix Table 2: Average Direct, Indirect and Total Impacts of Big City  

and Secondary Town Urban Growth, Based on Inverse Distance Weights Matrix 

 Headcount Poverty Index Poverty Gap Index 

 Lit Area Sum of lights Lit Area Sum of lights 

Average direct effects     

Big city lit area (or sum of lights) 0.115 0.191 0.256 0.158 

 (2.76)*** (4.90)*** (2.97)*** (1.82)* 

Secondary town lit area (or sum of 

lights) -0.010 -0.008 

-0.018 -0.020 

 (2.22)** (1.71)* (1.81)* (1.94)* 

Average indirect effects     

Big city lit area (or sum of lights) -0.123 -0.168 -0.007 -0.018 

 (1.57) (1.24) (0.58) (0.19) 

Secondary town lit area (or sum of 

lights) -0.137 -0.382 -0.234 -0.292 

 (1.38) (2.82)*** (1.81)* (2.13)** 

Average total effects     

Big city lit area (or sum of lights) -0.008 0.023 0.253 0.140 

 (0.08) (0.15) (2.31)** (1.04) 

Secondary town lit area (or sum of 

lights) -0.147 -0.389 -0.252 -0.312 

 (1.48) (2.87)*** (1.93)* (2.24)** 

Notes: Average direct effects, indirect effects and total effects are based on equation (3) using the decomposition 

of LeSage and Pace (2009) and are calculated from the models reported in Appendix Table 1. Secondary towns 

are based on a 15% luminosity threshold. z-statistics in ( ), ***, **,* for p<0.01, 0.05, 0.1. 



Appendix Table 3: Effects of Big City Lights and Secondary Town Lights (at 20% threshold) on Poverty Rates: SARAR Model 

 ---------------Headcount Poverty Rate--------------- ------------------Poverty Gap Index------------------ 

 (1) (2) (3) (4) (5) (6) (7) (8) 

Big city lit area  0.082  0.069  0.206  0.233  

 (2.05)**  (1.58)  (2.24)**  (2.35)**  

Big city average DN value   0.053 0.030   0.017 -0.065  

  (1.54) (0.80)   (0.21) (0.75)  

Big city sum of lights    0.154    0.136 

    (3.88)***    (1.49) 
         

Secondary town lit area  0.001  0.012  0.003  0.001  

 (0.16)  (0.92)  (0.27)  (0.05)  

Secondary town average DN value   -0.002 -0.011   0.001 0.001  

  (0.38) (0.90)   (0.10) (0.03)  

Secondary town sum of lights    -0.001    0.002 

    (0.22)    (0.20) 
         

W × Big city lit area  -0.016  -0.017  -0.022  -0.022  

 (2.83)***  (2.70)***  (1.79)*  (1.66)*  

W × Big city average DN value  -0.018 0.008   -0.043 -0.008  

  (0.73) (0.32)   (0.81) (0.13)  

W × Big city sum of lights    -0.022    -0.032 

    (2.75)***    (1.76)* 
         

W × Secondary town lit area  -0.003  0.000  -0.007  -0.002  

 (1.27)  (0.07)  (1.18)  (0.11)  

W × Secondary town average DN value  -0.005 -0.004   -0.009 -0.006  

  (1.92)* (0.55)   (1.63) (0.36)  

W × Secondary town sum of lights    -0.003    -0.007 

    (1.24)    (1.19) 
         

Spatial lag of poverty rate (delta) 0.011 0.012 0.011 0.014 -0.061 -0.061 -0.061 -0.061 

 (1.33) (1.32) (1.26) (1.60) (4.18)*** (4.11)*** (4.13)*** (4.17)*** 

Spatial lag of error (rho) 0.107 0.106 0.107 0.105 0.095 0.095 0.095 0.095 

 (15.99)*** (15.48)*** (15.72)*** (15.27)*** (9.42)*** (9.32)*** (9.32)*** (9.45)*** 

Tests of parameter restrictions to nest:         

 spatial Durbin model (ρ = 0) 255.6*** 239.7*** 247.2*** 233.1*** 88.7*** 86.9*** 86.9*** 89.2*** 

 spatial autocorrelation model (β2 = 0) 12.4*** 4.3 12.3** 12.2*** 6.2**   3.5 6.7 6.4** 

 spatial lag model (β2 = ρ = 0) 266.5*** 264.9*** 267.4*** 251.2*** 94.2*** 94.2*** 93.6*** 96.0*** 

 spatial error model (β2 =  = 0) 14.1*** 5.2 14.1** 13.8*** 23.0*** 21.8*** 23.3*** 23.8*** 

Notes: See Table 2.  
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Appendix Table 4: Effects of Big City Lights and Secondary Town Lights (at 15% threshold) on Poverty Rates: Aspatial Fixed Effects Model 

 ---------------Headcount Poverty Rate--------------- ------------------Poverty Gap Index------------------ 

 (1) (2) (3) (4) (5) (6) (7) (8) 

Big city lit area  0.136  0.131  0.221  0.237  

 (1.96)*  (1.96)*  (2.37)**  (2.38)**  

Big city average DN value   0.064 0.016   0.035 -0.048  

  (0.86) (0.23)   (0.29) (0.41)  

Big city sum of lights    0.165    0.138 

    (1.90)*    (1.08) 
         

Secondary town lit area  -0.013  -0.024  -0.017  -0.007  

 (1.44)  (0.98)  (1.16)  (0.25)  

Secondary town average DN value   -0.010 0.011   -0.016 -0.010  

  (1.25) (0.52)   (1.26) (0.40)  

Secondary town sum of lights    -0.012    -0.019 

    (1.35)    (1.37) 

Adjusted R-squared 0.985 0.985 0.985 0.985 0.928 0.928 0.928 0.928 

R-squared (within) 0.005 0.002 0.006 0.006 0.003 0.001 0.003 0.002 

Notes: Sum of lights is product of lit area and average DN value within lit area. All variables standardized (so intercepts not shown as centred at zero), after inverse-hyperbolic sine transformation; all 

models include fixed effects for each district and for each year, t-statistics in ( ) from robust standard errors clustered at district level, ***,**,* for p<0.01, 0.05, 0.1. N=4473. 

 

Appendix Table 5: Further Sensitivity Analyses for Effects of Big City Lights and Secondary Town Lights on Poverty Gap Index Using Aspatial Fixed Effects Models 

 --------Using 20% Luminosity Threshold for Towns-------- -----------Dropping if No Secondary Town Lights----------- 

 (1) (2) (3) (4) (5) (6) (7) (8) 

Big city lit area  0.222  0.235  0.231  0.249  

 (2.38)**  (2.38)**  (2.39)**  (2.40)**  

Big city average DN value   0.044 -0.038   0.058 -0.051  

  (0.36) (0.33)   (0.46) (0.42)  

Big city sum of lights    0.136    0.162 

    (1.07)    (1.29) 
         

Secondary town lit area  -0.001  -0.006  -0.143  -0.126  

 (0.06)  (0.24)  (2.01)**  (1.43)  

Secondary town average DN value   0.000 0.005   -0.043 -0.017  

  (0.01) (0.22)   (2.04)** (0.65)  

Secondary town sum of lights    -0.002    -0.060 

    (0.12)    (2.51)** 

Adjusted R-squared 0.928 0.928 0.928 0.928 0.922 0.922 0.922 0.922 
R-squared (within) 0.002 0.000 0.002 0.001 0.005 0.001 0.005 0.003 

Notes: See Appendix Table 4. N=4473 for columns (1) to (4) and N=3408 for columns (5) to (8). 
 


