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The traditional approach in spatial econometrics bases on the specification of a spatial 

weighting matrix W, which reflects the assumed spatial interactions between the nodes 

of a network. The elements of W are assumed to be perfectly known, but spatial models 

are often estimated by using an inaccurate W matrix with cells defined from a somewhat 

arbitrary choice. This paper explores how the Data Weighted Prior (DWP) estimator 

proposed by Golan (2001, Journal of Econometrics) can be adapted to be used in the 

context of discriminating between alternative potential W matrices to be used in spatial 

models. By means of numerical simulation, we evaluate the consequences of 

misspecifying the elements of W on the estimates of spatial models based on cross 

sectional datasets and how the use of a DWP estimator could alleviate these 

consequences. In particular, we pose two type of true spatial weighting matrices -dense 

versus sparse- and show that estimating spatial models by means of the DWP estimator 

alleviates the consequences of specifying a dense (sparse) W when the true W is sparse 

(dense). 

 

 

 

 

 

 



 

The model 

Our point of departure is a classical spatial lag model for 𝑁 locations formulated as: 

𝒚 = 𝑿𝜷 + 𝜌𝑾∗𝒚 + 𝒖 (1) 

Where 

𝑾∗ = 𝛼𝑾𝒅 + (1 − 𝛼)𝑾𝒔 (2) 

 

𝑾∗ is the spatial weighting matrix to be used to estimate our spatial lag model, where two 

possible options for its specification can be applied: a dense matrix as 𝑾𝒅 and a sparse 

matrix 𝑾𝒔. The final specification of this matrix that is going to be used in our model is 

given by a parameter 𝛼 to be estimated. This parameter only takes two values: 0,1. 𝑾∗ is 

set as 𝑾𝒅 if 𝛼 = 1, while 𝑾∗ is set as 𝑾𝒔 when 𝛼 = 0.  

Consequently, the formulation of the spatial lag model to be estimated is: 

𝒚 = 𝑿𝜷 + 𝜌𝑾∗𝒚 + 𝒖 = 𝑿𝜷 + 𝜌[𝛼𝑾𝒅 + (1 − 𝛼)𝑾𝒔]𝒚 + 𝒖 (3) 

 

Our objective is now twofold: (i) to estimate the relevant parameters of this model (𝜷 and 

𝜌) and, simultaneously, (ii) to choice the bets specification of the weighting matrix given 

the two alternatives given (i.e., to estimate 𝛼). These goals can be achieved by applying 

a DWP estimator. The solution bases on minimizing the KL divergence with respects to 

our prior beliefs about all these parameters. For the structural parameters 𝜷 and 𝜌 we must 

set a vector that contains its 𝑀 ≥ 2 possible realizations. This information is included for 

the estimation by means of a supporting vector 𝒃𝜷
′ = (𝑏𝛽1, … , 𝑏𝛽𝑀) for each 𝛽ℎ with 

unknown probabilities 𝒑′ℎ = (𝑝ℎ1, … , 𝑝ℎ𝑀). Similarly, it will be assumed that there are 

𝐿 ≥ 2 possible realizations for the spatial parameter  in a support vector 𝒃𝝆
′ =

(𝑏𝜌1, … , 𝑏𝜌𝐿), with corresponding probabilities 𝒑′𝝆 = (𝑝𝜌1, … , 𝑝𝜌𝐿). Vectors 𝒃𝜷 and 𝒃𝝆 

are based on the researcher’s a priori belief about the likely values of the parameter. For 

the random term 𝒖, a similar approach is followed. In contrast to other estimation 

techniques, DWP does not require rigid assumptions about a specific probability 

distribution function of the stochastic component, but it still is necessary to make some 

assumptions. 𝒖 is assumed to have mean 𝐸[𝒖] = 0 and a finite covariance matrix. 

Basically, we represent our uncertainty about the realizations of vector 𝒖 treating it as a 

discrete random variable with 𝐽 ≥ 2 possible outcomes contained in a convex set 𝒗′ =

{𝑣1, … , 𝑣𝐽}, assuming that these possible realizations are symmetric around zero (−𝑣1 =

𝑣𝐽) with probabilities 𝒑′𝒖 = (𝑝𝑢1, … , 𝑝𝑢𝐽). The traditional way of fixing the upper and 

lower limits of this set is to apply the three-sigma rule (see Pukelsheim, 1994). 

The formulation of the DWP estimator that we present here will estimate the parameters 

and the errors by choosing as solution the unknown probabilities that minimize the KL 

divergence with respect to some a priori distributions (𝒒𝜷, 𝒒𝝆 and 𝒒𝒖 respectively), being 

consistent at the same time with the in-sample information. The natural way of specifying 



 

these a priori distributions is to set them as uniform, which implies that all the values 

contained in the supporting vectors are, in principle, equally probable.  

For the 𝛼 parameter we follow a similar but not identical strategy in the specification of 

the supporting vectors and the a priori probability distributions. In particular, we set 

supporting vectors 𝒃𝜶 bounded by 0 and 1 as the lower and upper limits respectively. 

Even when we can consider more complex supporting vectors with 𝐾 points, let assume, 

for the sake of simplicity, that we consider a supporting vector with only 2 values as 

𝒃𝜶
′ = (0,1). We consider two a priori probability distributions, which reflect the only 

two possible values that we define for 𝛼: one is an a priory probability distribution (𝒒𝒔) 

with mass probability at the lower bound of 𝒃𝜶; the second is another a priori spike 

distribution (𝒒𝒅) but now with mass probability at the upper limit of 𝒃𝜶. The DWP 

estimator will discriminate which one of these two alternative priors takes over. If the a 

priori distribution 𝒒𝒔 is favored, we have reasons to think that the sparse weighting matrix 

𝑾𝒔 is preferable to 𝑾𝒅; the opposite situations happens if the DWP estimators chooses 

𝒒𝒅 as the a priori probability distribution that should be taken as reference. In the first 

case, we estimate the value of the 𝛼 parameter as 0, while the DWP estimate of  𝛼 will be 

1 in the second case. 

Following the formulation of the DWP estimation, the objective proposed can be 

achieved by minimizing the following constrained problem: 

Min
𝑷

𝐷(𝑷 𝑸⁄ ) = ∑ 𝐷(𝒑𝜷𝒉 𝒒𝜷𝒉⁄ )

𝐻

ℎ=1

+ 𝐷(𝒑𝝆 𝒒𝝆⁄ ) + 𝐷(𝒑𝒖 𝒒𝒖⁄ ) 

+𝛾𝐷(𝒑𝜶 𝒒𝒔⁄ ) + (1 − 𝛾)𝐷(𝒑𝜶 𝒒𝒅⁄ ) 

+𝐷(𝒑𝜸 𝒒𝜸⁄ ) 

(4) 

subject to: 

𝑦𝑛 = ∑ ∑ 𝑏𝑚𝑝ℎ𝑚𝑥ℎ𝑛𝑡

𝑀

𝑚=1

+ (∑ 𝑝𝜌𝑙

𝐿

𝑙=1

𝑏𝜌𝑙) ∑ 𝑤𝑛𝑖
∗ 𝑦𝑖

𝑁

𝑖≠𝑛

+ ∑ 𝑣𝑗

𝐽

𝑗=1

𝑢𝑛𝑗; 

𝐻

ℎ=1

 𝑛 = 1, … , 𝑁 (5) 

𝑤𝑛𝑖
∗ = 𝛼𝑤𝑛𝑖

𝑑 + (1 − 𝛼)𝑤𝑛𝑖
𝑠 = (∑ 𝑝𝛼𝑘

𝐾

𝑘=1

𝑏𝛼𝑘) 𝑤𝑛𝑖
𝑑 + (1 − ∑ 𝑝𝛼𝑘

𝐾

𝑘=1

𝑏𝛼𝑘) 𝑤𝑛𝑖
𝑠 ;  ∀𝑖

≠ 𝑛 

(6) 

𝛾 = ∑ 𝑏𝛾𝑔

𝐺

𝑔=1

𝑝𝛾𝑔 (7) 



 

∑ 𝑝ℎ𝑚 = 1

𝑀

𝑚=1

;  ∀ℎ (8) 

∑ 𝑝𝑢𝑗 = 1

𝐽

𝑗=1

;  𝑛 = 1, … , 𝑁 (9) 

∑ 𝑝𝛼𝑘

𝐾

𝑘=1

= ∑ 𝑝𝜌𝑙

𝐿

𝑙=1

= ∑ 𝑝𝛾𝑔

𝐺

𝑔=1

= 1 (10) 

 

To understand the logic of this DWP estimator an explanation on the objective function 

of the previous minimization program is required. The objective function contained in 

equation (4) is an information theory divergence measure based on the Kullback-Leibler 

(1951) divergences between several prior and posterior probability distributions generally 

denoted as 𝐷(𝑷 𝑸⁄ ) and it is divided into several terms. The first term ∑ 𝐷(𝒑𝜷𝒉 𝒒𝜷𝒉⁄ )𝐻
ℎ=1  

quantifies the Kullback-Leibler divergence between the estimated and the a priori 

probabilities for the parameters in 𝜷. In a similar fashion, 𝐷(𝒑𝝆 𝒒𝝆⁄ ) and 𝐷(𝒑𝒖 𝒒𝒖⁄ ) are 

the KL divergences for the spatial parameter 𝜌 and the noise term 𝒖.  

 

Additionally, we find the KL divergence corresponding to the 𝛼 parameter in the terms 

𝐷(𝒑𝜶 𝒒𝒔⁄ ) and 𝐷(𝒑𝜶 𝒒𝒅⁄ ). Note that the divergence with respect to the prior 𝒒𝒔 that 

assumes a sparse 𝑾 matrix is weighted by the parameter 𝛾, while the KL divergence to 

the prior 𝒒𝒅 that assumes a dense 𝑾 matrix is weighted 1 − 𝛾. This weighting parameter 

𝛾 is bounded between 0 and 1 and is estimated simultaneously to the other elements in 

our spatial lag model. 𝛾 measures the weight given to the prior 𝒒𝒔. Its estimation requires 

the definition of a supporting vector 𝒃′𝜸 = {𝑏𝛾1, … , 𝑏𝛾𝐺} containing its 𝐺 possible 

realizations.  Defined as 𝛾 = ∑ 𝑏𝛾𝑔
𝐺
𝑔=1 𝑝𝛾𝑔,  𝑏𝛾1 = 0 and 𝑏𝛾𝐺 = 1  are respectively the 

lower and upper bound set in 𝒃′𝜸. It is necessary, additionally, to specify an a priori 

probability distribution 𝒒𝜸 for the values in 𝒃′𝜸, which given the uncertainty about this 

parameter are usually specified as uniform. The last element in (4), finally, contains the 

KL divergence corresponding to parameter 𝛾. 

 

The constraint in (5) sets that the estimates must be consistent with the data observed in 

our sample of 𝑁 spatial units. Equation (6) defines the elements of the spatial matrix 𝑾∗ 

from the estimates of the parameter 𝛼, while (7) defines the estimates of the weighting 

parameter 𝛾. Finally (8), (9) and (10) are regularity constraints. By solving this DWP 

formulation, we will get estimates for the parameters 𝜷 and 𝜌 of the spatial lag model and 

simultaneously “picks up” the preferable specification of 𝑾 given the data.



 

 

Some preliminary simulation results 

Table 1. Results of the numerical experiment 

 (N=47 Spanish NUTS3 regions; 1,000 replications) 

 ML  

 Assumed 𝑾 matrix: 𝑾𝒅 (dense) Assumed 𝑾 matrix: 𝑾𝒌𝒏𝒏 (sparse) DWP 

 True 𝑾 matrix 𝟎 𝟏  𝟎 𝟏  𝟎 𝟏  𝜶 

 

 = 0.25 

𝑾𝒅 (dense) 

0.168 

[0.082] 

(0.086) 

0.200 

[0.001] 

(0.001) 

0.205 

[0.032] 

(0.035) 

0.399 

[0.007] 

(0.096) 

0.200 

[0.001] 

(0.001) 

0.058 

[0.003] 

(0.039) 

0.190 

[0.001] 

(0.009) 

0.207 

[0.001] 

(0.001) 

0.163 

[0.001] 

(0.008) 

0.950 

𝑾𝒌𝒏𝒏 (sparse) 

-0.726 

[0.052] 

(0.735) 

0.200 

[0.001] 

(0.001) 

0.780 

[0.022] 

(0.302) 

0.105 

[0.005] 

(0.005) 

0.200 

[0.001] 

(0.001) 

0.246 

[0.002] 

(0.002) 

0.117 

[0.001] 

(0.001) 

0.204 

[0.001] 

(0.001) 

0.220 

[0.001] 

(0.001) 

1.000 

 

 = 0.50 

𝑾𝒅 (dense) 

0.182 

[0.158] 

(0.165) 

0.200 

[0.001] 

(0.001) 

0.464 

[0.029] 

(0.030) 

0.970 

[0.014] 

(0.771) 

0.200 

[0.001] 

(0.001) 

0.127 

[0.002] 

(0.141) 

0.197 

[0.001] 

(0.001) 

0.207 

[0.001] 

(0.001) 

0.436 

[0.001] 

(0.001) 

0.001 

𝑾𝒌𝒏𝒏 (sparse) 

-2.382 

[0.050] 

(6.213) 

0.200 

[0.001] 

(0.001) 

1.569 

[0.010] 

(1.153) 

0.101 

[0.006] 

(0.006) 

0.200 

[0.001] 

(0.001) 

0.499 

[0.001] 

(0.001) 

0.163 

[0.001] 

(0.001) 

0.208 

[0.001] 

(0.001) 

0.447 

[0.001] 

(0.001) 

1.000 

 

 = 0.75 

𝑾𝒅 (dense) 

0.322 

[0.554] 

(0.604) 

0.200 

[0.001] 

(0.001) 

0.702 

[0.026] 

(0.028) 

2.665 

[0.052] 

(6.629) 

0.200 

[0.001] 

(0.001) 

0.201 

[0.002] 

(0.304) 

0.197 

[0.001] 

(0.001) 

0.207 

[0.001] 

(0.001) 

0.717 

[0.001] 

(0.001) 

0.001 

𝑾𝒌𝒏𝒏 (sparse) 

-6868 

[0.061] 

(48.613) 

0.200 

[0.001] 

(0.001) 

2.263 

[0.003] 

(2.292) 

0.098 

[0.008] 

(0.008) 

0.200 

[0.001] 

(0.001) 

0.750 

[0.001] 

(0.001) 

0.176 

[0.001] 

(0.006) 

0.217 

[0.001] 

(0.001) 

0.707 

[0.001] 

(0.002) 

1.000 

Notes: figures in the table show, respectively, the average estimates, the empirical variances (in brackets) and the Mean Squared Errors (in 

parentheses) through the simulation. Values of parameters 
𝟎
 and 

𝟏
 are 0.1 and 0.2 respectively. The spatial parameter 𝝆 takes three different values: 

0.25, 0.5 and 0.75. The supporting vectors for the parameters 
𝟎
 and 

𝟏
 in the DWP estimator have been set as common in 𝒃′ = [−𝟏, 𝟎, 𝟏]; for the 

spatial autoregressive parameter this vector is again 𝒃′ = [−𝟏, 𝟎, 𝟏]. 

 



 

Table 2. Results of the numerical experiment 

 (N=164 EU NUTS2 regions; 1,000 replications) 

 ML  

 Assumed 𝑾 matrix: 𝑾𝒅 (dense) Assumed 𝑾 matrix: 𝑾𝒌𝒏𝒏 (sparse) DWP 

 True 𝑾 matrix 𝟎 𝟏  𝟎 𝟏  𝟎 𝟏  𝜶 

 

 = 0.25 

𝑾𝒅 (dense) 

0.136 

[0.049] 

(0.051) 

0.200 

[0.001] 

(0.001) 

0.226 

[0.023] 

(0.023) 

0.430 

[0.003] 

(0.112) 

0.199 

[0.001] 

(0.001) 

0.025 

[0.001] 

(0.052) 

0.146 

[0.001] 

(0.002) 

0.201 

[0.001] 

(0.001) 

0.213 

[0.001] 

(0.001) 

0.001 

𝑾𝒌𝒏𝒏 (sparse) 

-0.563 

[0.061] 

(0.501) 

0.203 

[0.001] 

(0.001) 

0.700 

[0.028] 

(0.231) 

0.095 

[0.002] 

(0.002) 

0.200 

[0.001] 

(0.001) 

0.254 

[0.023] 

(0.023) 

0.116 

[0.001] 

(0.001) 

0.201 

[0.001] 

(0.001) 

0.235 

[0.001] 

(0.001) 

1.000 

 

 = 0.50 

𝑾𝒅 (dense) 

0.136 

[0.114] 

(0.115) 

0.200 

[0.001] 

(0.001) 

0.484 

[0.024] 

(0.024) 

1.068 

[0.006] 

(0.942) 

0.199 

[0.001] 

(0.001) 

0.058 

[0.001] 

(0.196) 

0.212 

[0.001] 

(0.013) 

0.202 

[0.001] 

(0.001) 

0.443 

[0.001] 

(0.003) 

0.001 

𝑾𝒌𝒏𝒏 (sparse) 

-2.321 

[0.115] 

(5.978) 

0.207 

[0.001] 

(0.001) 

1.596 

[0.024] 

(1.226) 

0.086 

[0.003] 

(0.003) 

0.200 

[0.001] 

(0.001) 

0.506 

[0.001] 

(0.001) 

0.153 

[0.001] 

(0.003) 

0.201 

[0.001] 

(0.001) 

0.471 

[0.001] 

(0.001) 

1.000 

 

 = 0.75 

𝑾𝒅 (dense) 

0.130 

[0.441] 

(0.442) 

0.200 

[0.001] 

(0.001) 

0.743 

[0.023] 

(0.023) 

2.953 

[0.025] 

(8.167) 

0.198 

[0.001] 

(0.001) 

0.096 

[0.001] 

(0.429) 

0.211 

[0.001] 

(0.012) 

0.202 

[0.001] 

(0.001) 

0.722 

[0.001] 

(0.001) 

0.001 

𝑾𝒌𝒏𝒏 (sparse) 

-7.419 

[0.311] 

(5.978) 

0.214 

[0.001] 

(0.001) 

2.456 

[0.016] 

(2.925) 

0.069 

[0.005] 

(0.006) 

0.200 

[0.001] 

(0.001) 

0.750 

[0.001] 

(0.001) 

0.051 

[0.001] 

(0.003) 

0.216 

[0.001] 

(0.001) 

0.751 

[0.001] 

(0.001) 

0.010 

Notes: figures in the table show, respectively, the average estimates, the empirical variances (in brackets) and the Mean Squared Errors (in parentheses) 

through the simulation. Values of parameters 
𝟎
 and 

𝟏
 are 0.1 and 0.2 respectively. The spatial parameter 𝝆 takes three different values: 0.25, 0.5 and 

0.75. The supporting vectors for the parameters 
𝟎
 and 

𝟏
 in the DWP estimator have been set as common in 𝒃′ = [−𝟏, 𝟎, 𝟏]; for the spatial 

autoregressive parameter this vector is again 𝒃′ = [−𝟏, 𝟎, 𝟏]. 

 

 


