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1 Introduction

Opioid-induced deaths (hereafter, briefly opioid mortality)1 increased sharply in the United States

(US) during the past three decades, and opioid overdose mortality has become an important, yet

inadequately understood public health problem (Kopel 2019). Although opioid mortality is a spatial

characteristic of a population in a specific area (Cossman et al. 2007), only few studies have used

spatial econometric methods to control for spatial dependence2 in regression models that aim to

identify the impact of determinants on the outcome of the opioid mortality process (see Cushing et

al. 2020). Sparks and Sparks (2010) apply spatial autoregressive models to the study of US county

mortality rates, and Yang et al. (2015) explore geographic variation in US mortality rates using a

conventional spatial Durbin model. These studies, however, are cross-sectional in nature on the one

side and do not contribute to the opioid mortality literature on the other.

To overcome this shortcoming in mortality research in general and opioid mortality research in

particular, we use panel rather than cross-sectional data to study the relationship between opioid

mortality rates and explanatory variables from a longitudinal perspective that accounts for temporal

and spatial dependence simultaneously. Omitting the spatial dependence issue would increase the

risk of obtaining biased estimation results, while the use of panel data results in a more accurate

inference of model parameters (Baltagi et al. 2007). Panel data is generally more informative,

contains more degrees of freedom and less multicollinearity between variables than cross-sectional

data, and improves the efficiency of econometric estimates (see Elhorst 2021). It is more informative

since providing information on both the intertemporal dynamics and the individuality of the obser-

vational units (regions) and allowing one to control the effects of missing and unobserved variables

(for more details, see Hsiao 2007).

The primary objective of this study is to employ a spatial Durbin panel data model,3 an extension

1Opioids include natural opioids such as morphine and codeine, semisynthetic opioids such as oxycodone,
hydrocodone, hydromorphone and oxymorphone, and synthetic opioids such as methadone, tramadole and
fentanyl. Heroine is an illicit opioid synthesized from morphine.

2Spatial dependence among observational units in the US is well documented in Rossen et al. (2014),
Buchanich et al. (2016), and Stewart et al. (2017), among others.

3A spatial Durbin rather than a spatial Durbin error panel data model specification is used because
it allows for quantification of spatial spillovers, the focus of interest in this study. Note that a spatial
Durbin error specification would rule out spatial spillovers a priori, allowing for spatial impacts arising from
dependence in the disturbances but not from situations where changes in a variable from observation unit j
impact the outcome of the dependent variable in another unit i, called spatial spillover from j to i.
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of the cross-sectional model to a panel data framework, for estimating direct and indirect (cross-state

spillover) effects of a set of factors that may influence opioid mortality rates across space and over

time. In this model specification, the characteristics of a specific observation unit (in our case: state)

and its neighbors are simultaneously considered. To the best of our knowledge, no opioid mortality

research has considered spatial spillovers among observational units. Specifically, we consider five

variables to capture the racial/ethnic structure of a state, five variables to cover the state’s age

structure, two variables to represent the educational attainment level of its population, and three

covariates that address economic distress. In addition to the sociodemographic and socioeconomic

variables, we include the opioid prescription rate to account for one of the opioid supply factors,

and health insurance coverage that may have the potential to increase the demand for drugs.

Our choice of using states rather than counties as observation units in this study was forced by

data availability.4 The Annual American Community Survey (ACS) census data is available starting

2014 for the demographic variables included in the study. Hence our study used the period 2014-

2019. The model is applied to 49 states over six years, from 2014 to 2019. A k-nearest-neighbor

matrix is chosen to represent the topological structure between the states.5 The calculation of

effects estimates is based on Bayesian estimation and inference that reflects a proper interpretation

of the marginal effects for our nonlinear model that involves lags of the dependent variable vector.

The study provides a rich picture of how sociodemographic and socioeconomic determinants affect

opioid mortality. The findings highlight the critical role indirect (spillover) effects play. A neglection

of the spillover effects would cause incorrect inferences.

The remainder of the paper is structured as follows. Section 2 presents the econometric frame-

work, outlines the proposed model, discusses prior selection for Bayesian estimation of the model,

and shows how to calculate direct and indirect effects estimates necessary for a proper interpretation

of the model estimates.6 Section 3 outlines model specification issues, provides a brief summary

4Using counties as observation units would be preferable but county-level data is unavailable for all the
states in the US for even one year, due to HIPAA (Health Insurance Portability and Accountability Act)
privacy rules in some counties. The missing data (especially in mid-western and western states) forced us to
select the Census geography of the state as the unit of observation.

5This weight matrix constrains the neighbor structure to the k nearest neighbors. For a definition of
k-nearest neighbor matrices, see, for example, Fischer and Wang (2011).

6It is noteworthy that this econometric framework is so general that it could be also used for quantifying
direct and spillover effects of a set of factors that influence mortality caused by other pandemics such as the
HIV/Aids pandemic, the Spanish flu or more recently the COVID-19 pandemic.
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of the data set used, and presents then the direct and indirect effects estimates of the explanatory

variables on opioid mortality rates. The last section summarizes and concludes the paper.

2 Econometric Framework

2.1 The model

The econometric approach we employ in this study is a spatial econometric panel data model that

is known as spatial Durbin panel data model in the spatial econometrics literature (see, e.g., LeSage

2014) and can be written in matrix form as

y = ρWy +Xβ +WXθ + ιT ⊗ µ+ ν ⊗ ιN + ϵ (1)

where y is the NT ×1 dependent variable vector of opioid mortality rates in state i (i = 1, ..., N) at

time t (t = 1, ..., T ), organized with t being the slow index for elements yit in the vector y. X is an

NT × Q matrix of Q explanatory variables that is organized in the same way. β is the associated

Q× 1 parameter vector.

W is an NT ×NT weight matrix representing some sort of connections among the states. The

matrix has a block diagonal form: IT ⊗ w, with ⊗ being a Kronecker product. w is a N × N

spatial weight matrix reflecting spatial proximity of the N states that make up the panel of states

over t = 1, ..., T time periods. The diagonal elements wii = 0 (i = 1, ..., N), and the matrix is

row-normalized to have row-sums of unity. The NT × 1 matrix-vector product Wy is referred to as

spatial lag and reflects a linear combination of neighboring state values for the dependent variable.

The scalar parameter ρ denotes the spatial dependence parameter that indicates the strength of

spatial dependence between the vector y and the vector Wy.7 The NT ×Q matrix-matrix product

WX is used to create spatial lags of the Q explanatory variables of the model, and represents a

linear combination of characteristics from neighboring states, with the associated parameters θ.

7Note that the dependence parameter ρ is well defined over a limited interval that safeguards the existence
of the matrix inverse R−1 = (INT −ρW )−1. This interval is (λmin, λmax), where λmin, λmax are the minimum
and maximum eigenvalues of the matrix (INT −ρW ), respectively (LeSage 2021). λmin will be negative, and
λmax will be one, provided the matrix W is row-normalized. In this study we use a lower bound of −1 to
avoid the need to calculate the minimum and maximum eigenvalues of the large matrix R.
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ιT ⊗µ represents an N -vector of state-specific fixed effects µ, with ⊗ being a Kronecker product

that repeats the vector µ for each time period. ν ⊗ ιN reflects a Kronecker product of the T -vector

of time-specific effects ν, one for each time period. The NT × 1 vector ϵ is a stochastic disturbance

term, assumed to be normally distributed with zero mean and a scalar variance, σ2.

ϵ ∼ N (0NT , σ
2INT ) (2)

2.2 Bayesian estimation

Estimation of the spatial Durbin panel data model outlined in Eq.(1) is based on Markov Chain

Monte Carlo (MCMC) estimation, with prior distributions assigned to the parameters ρ, δ = (β, θ)′

and σ2.8 Parameter restrictions are imposed on the dependence parameter ρ during MCMC sam-

pling, using methods described in LeSage (2020), and Fischer and LeSage (2020). MCMC estimation

involves sequentially sampling each parameter from conditional distributions. One of the main ad-

vantages of MCMC sampling is that conditional distributions for each parameter, given values of

all other model parameters, take a form that is computationally simple to sample from.

The prior setup we use is standard. We rely on a normal prior for the parameters δ = (β, θ)′,

associated with the X- and WX-variables:

p(δ) ∼ N (δ̄, Σ̄δ) (3)

where δ̄ is a 2Q× 1 vector of prior means, and Σ̄δ a (2Q)× (2Q) prior variance-covariance matrix.

We set the prior means to a value of 0.5 and the prior variance to 0.001.

For the dependence parameter ρ we employ a uniform prior

p(ρ) ∼ U(−1, 1) (4)

because this scalar parameter is constrained to lie in the open interval (−1, 1). The constraint is

imposed during MCMC estimation using a Metropolis-Hastings approach with rejection sampling,

8For µ and ν no priors, just demeaning transformations are used (see LeSage 2021). The reader interested
in a recent survey of Bayesian inference methods in regional science may consult Mills and Parent (2021).
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using methods described in Fischer and LeSage (2020), and LeSage (2020).

A non-informative prior is placed on the noise variance parameter σ2, because we use an inverse

gamma (ā, b̄) distribution shown in Eq. (5).

p(σ2) =
b̄ā

gamma(ā)
(σ2)−(ā+1) exp(−b̄/σ2) (5)

where ā −→ 0, b̄ −→ 0 reflect no prior information for this parameter.

As is traditional in the literature, we assume that priors for ρ, δ and σ2 are independent. Given

these priors we use the conditional distributions described in LeSage and Fischer (2020). A set of

4,000 draws were taken for determining posterior estimates of the parameters, with the first 500

omitted for burn-in of the sampler.

2.3 Direct and indirect impact estimates

LeSage and Pace (2009) point out that the estimates for the coefficients β and θ are not meaningful,

if one is interested in how changes in the explanatory variables impact the dependent variable

outcome, which is the object of interest in this paper. In our model that includes a spatial lag of

the dependent and independent variables, a change in a single explanatory variable in state i has

a direct impact in i as well as an indirect (spillover) impact from other-states j ̸= i to state i. We

follow the suggestion of LeSage and Pace (2009) to calculate direct and indirect effects estimates

that reflect a proper interpretation of the marginal effects for our nonlinear model which involves

spatial lags of the dependent variable.9

The partial derivatives used to calculate the direct and indirect effects estimates take the form of

an NT ×NT matrix. Using matrix notation, the partial derivative for the qth explanatory variable

Xq can be written as shown in Eq. (6).

∂y/∂Xq = (INT − ρ̂W )−1 (β̂ +Wθ̂) (6)

where ρ̂, β̂ and θ̂ denote parameter estimates. Diagonal elements of this matrix represent own-partial

9See LeSage and Pace (2021) for a discussion of issues surrounding proper interpretation of the estimates
from a variety of spatial regression models.
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derivatives, while off-diagonal elements reflect cross-partial derivatives. Equation (6) illustrates that

the partial derivatives of y with respect to the qth explanatory variableXq has two specific properties

(Elhorst 2010): First, if a particular explanatory variable Xq in a particular state i changes, not

only the dependent variable in this state i will change, but also in other states j ̸= i. Second, direct

and indirect effects are different for different states in the sample. Direct effects are different, since

the own-partial derivatives of the NT ×NT matrix are different. And indirect effects are different,

since the cross-partial derivatives of this matrix are different for different states.

If we have N states and Q different explanatory variables, then we get Q different NT × NT

matrices representing direct and indirect effects. To improve the surveyability of the Q×NT ×NT

effects estimates, LeSage and Pace (2009) propose using the mean of the main diagonal elements of

the matrix of partial derivatives to produce a scalar summary of the direct effects. Using the mean

of these NT different values generates a scalar summary that may be interpreted as representing

how a change in the qth explanatory variable in the typical state impacts outcome y for this state

(LeSage and Pace 2021).10

Indirect effects represent the impact of the ith state outcomes yi from a change in the qth

explanatory variable from the jth state j ̸= i, and capture the off-diagonal elements of the NT×NT

matrix. Specifically, the elements in the ith row of the matrix show

∂yi/∂X
q
j for i ̸= j; i = 1, ..., N (7)

reflecting how changes in each of the other states’ qth explanatory variable impact outcomes in the

ith state.

Note that our model can have positive (or negative) direct effects associated with negative (or

positive) indirect effects for the qth variable, so that spillover impacts might work in the opposite

direction of direct impacts, arising from changes in each explanatory variable. Total effects represent

the sum of direct and indirect effects. In addition to calculating scalar summary measures of the

effects, there is a need to calculate an empirical distribution from which measures of dispersion for

10Since the panel model includes time-specific fixed effects that capture variation over time periods, we
can reasonably average the scalar summary estimates. But these scalar summary measures might ignore
impact information over all time periods regarding the impact of changing values Xq at the observation level
of direct (indirect) effects of the N states.
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the effects can be constructed and used for inference regarding the statistical significance of the

effects (LeSage and Pace 2021). This is done using a sequence of say 1,000 MCMC draws for the

parameters ρ, β, θ to calculate a sequence of 1,000 scalar summary measures of these effects that

reflect the posterior distributions.11

Given an estimate of the standard deviation for the scalar summary point estimates, we can

test hypotheses regarding the significance of the various types of effects for each of the explanatory

variables used in the model. t-statistics, t-probabilities, and lower 0.05 and upper 0.95 credible

intervals can be computed using the retained MCMC draws. The mean of the draws for direct

effects (for each of the Q explanatory variables), and the standard deviation of the draws is taken

to construct the t-statistic, which is then used to find the associated t-probability. The lower 0.05

and upper 0.95 are based on the MCMC draws. Given a set of 1,000 MCMC draws, the lower 0.05

interval would be determined by the 50th value from the lowest set of sorted values, and the upper

0.95 by the 950th value from this sorted set (LeSage 2021).

3 Application of the Model

The empirical model estimated uses a pool of the 49 contiguous US states (N = 49) over six years

from 2014 to 2019 (T = 6). The dependent variable vector y represents the annual opioid mortality

rates, and we consider a suit of Q=17 explanatory variables. The choice of the time was based on

the availability of data.12

3.1 Model specification issues

The definition of a spatial lag in spatial regression models in general, and our spatial Durbin panel

data model in particular, depends on the choice of a spatial weight matrix that summarizes the

topology of the data set. Clearly, a large number of weight matrices can be derived for the same

spatial layout (see Fischer and Wang 2011 for a review). But k-nearest neighbor matrices that

11Reporting spatial Durbin model estimates based on direct and indirect scalar summaries is widespread
in the spatial econometrics literature.

12ACS variables are not available for years prior to 2014, and Census data for 2019 was released only in
2021.
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constrain the neighbor structure to the k nearest neighbors have received increasing popularity in

spatial econometrics in recent years due to several reasons. First, there are new algorithms for

calculating k nearest neighbors, and these are extremely fast for millions of observations (Matlab

implemented these).13 Second, interpretation of spatial spillovers having a constant number of

neighbors is more intuitive. The magnitude of spillovers to the k neighbors can easily be calculated

and understood. This is not the case where an observation unit (state here) has two neighbors and

another has four neighbors as in the case of, for example, a contiguity-based weight matrix.

The number of neighbors, k, is the parameter of this weighting scheme. Its choice is an em-

pirical issue. Our solution to this problem relies on a Bayesian Comparison approach (see LeSage

and Fischer 2008).14 This approach calculates the Bayesian posterior model probabilities of ten

different k-nearest neighbor matrices with k=1, ..., 10, given our spatial Durbin panel data model

specification. These probabilities are based on the log-marginal likelihood of the model obtained

by integrating out all parameters of the model over the entire parameter space on which they are

defined. A log-marginal likelihood of −174.86 and an associated model probability close to one

indicates that the model specification with the k=8 nearest neighbor matrix is most consistent with

the given panel data sample.

W is an 294 × 294 weight matrix representing connections between the states. W has a block

diagonal IT ⊗ w, with ⊗ denoting a Kronecker product. w is a 49 × 49 spatial weight matrix

constructed based on eight nearest neighboring states and identical during each time period in our

model formulation. The diagonal elements wii = 0 (i = 1, ..., 49), and the matrix is row-normalized

to have row-sums of unity. The 294 × 1 matrix-vector product Wy is referred to as spatial lag

and reflects a linear combination of neighboring states’ values for the dependent variable vector of

opioid death rates. The 294 × Q matrix product WX is used to create spatial lags of the Q = 17

explanatory variables described in the following subsection.

13Note that distance is difficult to compute by comparison.
14An advantage of this model comparison approach relative to approaches based on likelihood-ratio or

Lagrange multiplier methods is that the result does not depend on specific parameter values, but is valid for
all possible parameter values.
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3.2 Data and data sources

Data for the dependent variable vector y come from the US Centers for Disease Control and Pre-

vention (CDC) Wonder Online Databases of Multiple Cause of Death, filtered for drug-related

causes of deaths, estimated per 10,000 population for each state and year. Drug overdose deaths

were identified using the International Classification of Diseases, Tenth Revision (ICD-10) underly-

ing cause-of-death codes X40-X44 (unintentional), X60-X64 (suicide), X85 (homocide), or Y10-Y14

(undetermined intent).15 Among deaths with drug overdose as the underlying cause, the opioid sub-

category was determined by the following ICD-10 multiple cause-of-death codes: opium (T40.0);

heroin (T40.1); natural and semisynthetic opioids (T40.2); methadone (T40.3); synthethic opioids

other than methadone (T40.4); or other and unspecified narcotics (T40.6) as a contributing cause.16

Fig. 1 Opioid mortality rates in US, 2014 and 2019

Figure 1 shows a marked temporal growth of the opioid mortality rates over the time frame,

and increasing geographic heterogeneity in the spatial distribution of the rates in 2019, with hot

spots in the Rust Belt and the Midwest. While the opioid crisis initially hit the Midwest states and

New Mexico hardest, Western states such as California, Nevada and Arizona have also experienced

15See https://www.cdc.gov/nchs/icd/icd10.htm. The data are based on death certificates for US residents.
Each death certificate contains a single underlying cause of death and up to twenty additional multiple causes.
Drug-specific overdose numbers and rates might have changed substantially from 2017 to 2018 as a result of
changes in reporting in some states (see Wilson et al. 2020).

16Note that the opioid subcategories are not mutually exclusive. Some deaths involved more than one
opioid subcategory and were included in the opioid mortality rates.
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increases in opioid mortality rates. Based on prior opioid research we selected the following set of

sociodemographic and socioeconomic X-variables:17

(a) Five variables are considered to capture the racial/ethnic structure of a state: percentages

of the population who identify as White, African American, Native American, Asian or

Hispanic/Latino races. The data were derived from the US Census Bureau’s Population

Estimates Program called American Community Survey (ACS).

(b) To uncover the impact of age on opioid mortality rates, we include age in years based on

standard definitions: percentages of people with 18-24 years, 25-34 years, 35-44 years, 45-64

years, and with 65 years and more (Data source: ACS).

(c) The level of educational attainment of the population is widely viewed as a relevant factor

affecting opioid mortalities (see, for example, Blake-Gonzalez et al. 2021). Educational

attainment is measured in terms of two variables, the percentage of people with 25 years

or older who hold a high school’s degree and above and the percentage of people having a

bachelor’s degree or higher (Data source: ACS).

(d) Economic conditions of a state could account for up to one-tenth of the rise of opioid mor-

tality rates (Blake-Gonzalez et al. 2021). Following Nosrati et al. (2019) we consider three

variables that address economic distress: the poverty rate, the variable of lower income and

the unemployment rate. The data for these variables come from the American Community

Survey. The poverty rate is calculated as the percentage of the population whose income

falls below the state-specific level per year, while lower income is measured in terms of the

number of people with income of less than $ 34,999 per 10,000 persons. The unemployment

rate denotes the percentage of people aged 16 years and older who are unemployed in the

resident labor force.18

(e) In addition to the above sociodemographic and socioeconomic factors, we include the opioid

17For the rationale choosing these variables, see Sun (2022), Blake-Gonzalez et al (2021), Wilson et al.
(2020), Bohnert et al. (2011), Marotta et al. (2019), Nechuta et al. (2018) and King et al. (2014) among
others.

18It is worth noting that the US Department of Health and Human Services utilizes unemployment in its
opioid study (Ghertner and Groves 2018)
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prescription rate to account for one of the opioid supply factors,19 and health insurance cov-

erage. The prescription rate is calculated by dividing the total number of opioid prescriptions

dispensed annually by the annual resident population and multiplying the number by 100.

The data come from the US Opioid Dispensing Rate Maps provided by IQVIA Xponent from

the CDC in 2020. Health insurance coverage is measured in terms of the percentage of people

with health insurance. To the extent that individuals are covered by health insurance, they

may better afford to purchase prescriptions. Hence, health insurance may have the potential

to increase the demand for drugs (Blake-Gonzalez et al. 2021).

3.3 Estimation results

Estimation is based on Markov Chain Monte Carlo estimation as described in Section 2.2. The

resulting estimates are presented in Table 1. The table contains posterior means for the parameter

estimates of the 17 explanatory variables along with the associated (asymptotic) t-statistics and z-

probabilities. t-statistics represent the posterior mean divided by the posterior standard deviation

both of which are calculated from the retained MCMC draws. The t-statistics are then used to

determine the associated z-probabilities. R-square for the estimates is very high (0.94) and sigma-

square low (0.0502). We see evidence of significant spatial effects working through the dependent

variable, since ρ̂ = 0.2939 which is significant at the 99% level. The parameter estimates for the

β-coefficients on the X-variables and the θ-coefficients on the WX-variables are not meaningful if

one is interested in how changes in explanatory variables impact the dependent variable outcomes

which is the focus of interest in this study. As emphasized in Section 2.3, it is is necessary to

properly calculate the direct, indirect and total effects associated with changes in the explanatory

variables on opioid mortality rates, given our spatial panel data model.

Table 2 reports the posterior mean effects estimates along with the 95 percent credible intervals

and t-statistics that provide a valid inference with respect to the significance of the impact estimates.

The scalar summary measures reflect: (i) a direct impact, (ii) an indirect (spatial spillover) impact

and (iii) a total impact on opioid mortality rates for ceteribus paribus changes in the explanatory

19The recent spike in the number of opioid deaths has been reported widely and linked to the expanded
use of prescription opioids and potentially inappropriate opioid prescribing practices (see Stewart et al. 2017
and Stopka et al. 2019).
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Table 1 Posterior parameter estimates of the spatial Durbin panel data model

Variable (Parameter)
Posterior

Mean

Asymp.

t-stat.
z -prob.

Percent White (β1) −0.0163 −0.7389 0.4600

Percent Black/African American (β2) 0.0078 0.1706 0.8645

Percent Native (β3) −0.2221 −1.8458 0.0649

Percent Asian (β4) −0.2059* −2.3068 0.0211

Percent Hispanic/Latino (β5) 0.0360 0.7658 0.4438

Percent Age 18-24 (β6) −0.1057 −1.2978 0.1944

Percent Age 25-34 (β7) 0.1372 1.4731 0.1407

Percent Age 35-44 (β8) 0.0610 0.5755 0.5650

Percent Age 45-64 (β9) −0.0594 −0.8160 0.4145

Percent Age ≥ 65 (β10) −0.1694* −2.2128 0.0269

Percent High School and above (β11) −0.0807* −2.4654 0.0137

Percent Bachelor and higher (β12) 0.0466 1.6510 0.0987

Poverty Rate (β13) −0.0282* −1.9677 0.0491

Lower Income(β14) 0.0238 1.3788 0.1680

Unemployment Rate (β15) 0.0210 0.6234 0.5330

Opioid Prescription Rate (β16) −0.0064* −2.3763 0.0175

Percent Health Insurance (β17) −0.0145 −1.6671 0.0955

W∗ Percent White (θ1) 0.2098* 2.5127 0.0120

W∗ Percent Black/African American (θ2) −0.3091 −1.8291 0.0674

W∗ Percent Native (θ3) −0.7714 −1.7840 0.0744

W∗ Percent Asian (θ4) 0.7766* 2.4292 0.0151

W∗ Percent Hispanic/Latino (θ5) 0.6277* 3.1032 0.0019

W∗ Percent Age 18-24 (θ6) 0.0487 0.2115 0.8325

W∗ Percent Age 25-34 (θ7) −0.3329 −1.1208 0.2624

W∗ Percent Age 35-44 (θ8) −0.7836* −2.9728 0.0030

W∗ Percent Age 45-64 (θ9) −0.2515 −1.0777 0.2812

W∗ Percent Age ≥ 65 (θ10) −0.8490* −4.7356 0.0000

W∗ Percent High School and above (θ11) −0.0220 −0.2096 0.8340

W∗ Percent Bachelor and higher (θ12) 0.0962 1.0993 0.2716

W∗ Poverty Rate (θ13) −0.1078* −2.1844 0.0289

W∗ Lower Income (θ14) 0.1852* 3.7613 0.0002

W∗ Unemployment Rate (θ15) −0.4948* −5.7702 0.0000

W∗ Opioid Prescription Rate (θ16) −0.0222* −2.5986 0.0094

W∗ Percent Health Insurance (θ17) −0.0158 −0.9359 0.3493

Rho (ρ) 0.2939* 4.0535 0.0001

Notes: Results are based on a k -nearest neighbor matrix W with k = 8 nearest neighboring states;

N = 49, T = 6 and Q = 17; parameter estimates calculated using LeSage’s (2021) Panel Data

Toolbox for MATLAB; performance: log-marginal likelihood= −174.8609, R-square= 0.9353,

corr-square= 0.6507 and sigma-square= 0.0502; * indicates significantly different from zero.
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variable concerned. A positive (negative) mean with positive (negative) lower and upper credible

intervals should be interpreted as a positive (negative) effect. Effects whose credible interval span

zero are not significant. These statistics for the scalar summary effects estimates are calculated

using the retained MCMC draws for the (direct, indirect and total) effects (for each explanatory

variable). The standard deviation of the draws is used to construct t-statistics that are taken to

determine the associated t-probabilities. The lower 0.05 and upper 0.95 intervals are also based on

the MCMC draws.

Focusing first on the direct effects estimates shown in Table 2, we see five out of 17 explanatory

variables that are significantly different from zero. All these impact estimates are negative. The

direct impact of changes in the senior (65 years and older) population share on opioid mortality is

negative with a magnitude of 0.2042. This result matches our intuition, as we should expect that

a larger percentage of senior people in the typical state i would reduce the opioid mortality rate in

this state. A bit larger in magnitude is the direct effect of the Native American population share

(−0.2545) which suggests that a larger percentage of this population in state i would reduce opioid

mortality in i, since members of this population tend to die of drug overdose less likely than those

from the White, African American and Hispanic subpopulations (for differences in opioid mortality

by race see Nechuta et al. 2018).

Opioid Prescribing20 representing the supply side has a negative direct effect of −0.0073, sug-

gesting that this rate in state i would reduce the opioid mortality rate in this state i, in contrast

to our expectation. This is likely to arise from the fact that our prescribing data includes only

prescriptions for Medicare and Medicaid patients and, thus, underscores the use of prescription

opioids, leading to biasing downward the effects estimates to a magnitude close to zero.

The direct impact of changes in the Poverty Rate is significant and negative on the opioid

mortality rate in i, reducing this too, but with a much lower magnitude of 0.0327 as compared to

the sociodemographic variables. The estimated direct effect of the Unemployment Rate is positive,

but not significantly different from zero, suggesting that this rate has no impact on own-state opioid

mortality. Its indirect effects estimate, however, indicates a significant and negative spillover impact,

implying that increasing unemployment in neighboring state j decreases opioid mortality in state i.

20Prescription opioids include natural, semisynthetic opioids and methadone (Scholl et al. 2019).
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Table 2 Direct, indirect and total impact estimates for changes in X - and W X -variables

Impact Estimates Posterior Mean t-stat. t-prob. Lower 0.05 Upper 0.95

A. Direct Impact Estimates

Percent White −0.0085 −0.3738 0.7087 −0.0524 0.0353

Percent Black/African American −0.0041 −0.0842 0.9330 −0.1000 0.0873

Percent Native −0.2545* −2.0072 0.0453 −0.5028 −0.0083

Percent Asian −0.1785 −1.9235 0.0550 −0.3623 0.0016

Percent Hispanic/Latino 0.0606 1.2011 0.2303 −0.0356 0.1582

Percent Age 18-24 −0.1050 −1.2992 0.1945 −0.2639 0.0500

Percent Age 25-34 0.1262 1.3160 0.1888 −0.0583 0.3103

Percent Age 35-44 0.0316 0.2972 0.7664 −0.1774 0.2446

Percent Age 45-64 −0.0698 −0.9563 0.3394 −0.2075 0.0750

Percent Age ≥ 65 −0.2042* −2.6293 0.0088 −0.3535 −0.0522

Percent High School and above −0.0825* −2.4486 0.0147 −0.1488 −0.0167

Percent Bachelor and higher 0.0508 1.7462 0.0814 −0.0075 0.1085

Poverty Rate −0.0327* −2.2147 0.0272 −0.0610 −0.0037

Lower Income 0.0312 1.7802 0.0757 −0.0025 0.0672

Unemployment Rate 0.0021 0.0630 0.9498 −0.0654 0.0688

Opioid Prescription Rate −0.0073* −2.6367 0.0086 −0.0127 −0.0018

Percent Health Insurance −0.0153 −1.7790 0.0759 −0.0321 0.0012

B. Indirect Impact Estimates

Percent White 0.2851* 2.3991 0.0168 0.0569 0.5318

Percent Black/African American −0.4279 −1.7446 0.0817 −0.9173 0.0489

Percent Native −1.1673 −1.8483 0.0652 −2.4187 0.0171

Percent Asian 0.9952* 2.1655 0.0308 0.1122 1.9368

Percent Hispanic/Latino 0.8889* 2.9519 0.0033 0.3175 1.5079

Percent Age 18-24 0.0244 0.0776 0.9382 −0.5871 0.6369

Percent Age 25-34 −0.4046 −0.9602 0.3374 −1.2489 0.4292

Percent Age 35-44 −1.0646* −2.8531 0.0045 −1.8139 −0.3602

Percent Age 45-64 −0.3749 −1.1445 0.2530 −1.0468 0.2564

Percent Age ≥ 65 −1.2530* −4.4361 0.0000 −1.8542 −0.7393

Percent High School and above −0.0640 −0.4300 0.6674 −0.3648 0.2361

Percent Bachelor and higher 0.1535 1.2188 0.2235 −0.0835 0.4039

Poverty Rate −0.1619* −2.2505 0.0249 −0.3084 −0.0266

Lower Income 0.2680* 3.5939 0.0004 0.1306 0.4227

Unemployment Rate −0.6805* −5.0752 0.0000 −0.9641 −0.4371

Opioid Prescription Rate −0.0336* −2.6377 0.0086 −0.0594 −0.0097

Percent Health Insurance −0.0280 −1.2301 0.2193 −0.0754 0.0158
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ctd.

Impact Estimate Posterior Mean t-stat. t-prob. Lower 0.05 Upper 0.95

C. Total Impact Estimates

Percent White 0.2767* 2.2097 0.0276 0.0392 0.5319

Percent Black/African American −0.4319 −1.6138 0.1072 −0.9697 0.0891

Percent Native −1.4218* −2.0513 0.0408 −2.7932 −0.1314

Percent Asian 0.8167 1.6403 0.1016 −0.1490 1.8213

Percent Hispanic/Latino 0.9495* 2.9070 0.0038 0.3358 1.6187

Percent Age 18-24 −0.0806 −0.2494 0.8031 −0.7277 0.5337

Percent Age 25-34 −0.2784 −0.6080 0.5435 −1.1690 0.6221

Percent Age 35-44 −1.0330* −2.6249 0.0089 −1.8313 −0.2848

Percent Age 45-64 −0.4447 −1.3038 0.1929 −1.1340 0.2234

Percent Age ≥ 65 −1.4571* −4.8200 0.0000 −2.0865 −0.8960

Percent High School and above −0.1465 −0.9060 0.3654 −0.4669 0.1834

Percent Bachelor and higher 0.2044 1.4858 0.1380 −0.0535 0.4814

Poverty Rate −0.1946* −2.5234 0.0119 −0.3508 −0.0488

Lower Income 0.2992* 3.7691 0.0002 0.1508 0.4650

Unemployment Rate −0.6784* −4.9108 0.0000 −0.9747 −0.4277

Opioid Prescription Rate −0.0409* −2.9591 0.0032 −0.0697 −0.0149

Percent Health Insurance −0.0432 −1.8770 0.0611 −0.0908 0.0020

Notes: Impact estimates are calculated using LeSage’s (2021) Panel Data Toolbox for MATLAB;
* indicates not significantly different from zero.

The final direct effects estimate that is significantly different from zero, is the direct impact of

changes in the percentage of people with 25 years or older who hold at least a high school’s degree.

This negative direct effect has a magnitude of 0.0825, implying to reduce the opioid mortality in

state i. The direct effects of all other explanatory variables are not significant, suggesting that they

have no impact on own-state opioid mortality.

The direct impact estimates differ from the corresponding coefficient estimates outlined in Ta-

ble 1. The difference is due to some feedback effect that comes into play in the direct effects

estimates. The discrepancy is positive since the impact estimates exceed the coefficients, reflecting

some positive feedback. Note that it would be a mistake to interpret the β-parameters as represent-

ing direct effects estimates. If we would incorrectly view, for example, the model coefficient β3 on

the Percent Native American variable as representing the direct impact, this would lead to an effect
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not significantly different from zero. But the true direct impact estimate points to effects estimates

that are negative and significant.

We now turn to considering the indirect (spatial spillover) effects estimates. These effects are

measures for the magnitudes of spatial spillovers from the model. We emphasize that it would be

a mistake to interpret the θ-coefficients as representing spatial spillover magnitudes in our model.

To see how incorrect this is, consider the difference between the θ-coefficients and the true indirect

effects correctly calculated from the cross-partial derivatives of the model, ∂yi/∂X
q
j , accumulated

across all states j ̸= i and then averaged. These estimates are referred to as a measure of cumulative

spatial spillovers, representing the impact of changes in other-state explanatory variables on own-

state outcomes.

Table 2 shows five variables with statistically significant negative indirect effects estimates. The

indirect impact of changes in the percentage of the middle-aged (35-44 years) and senior (60 years

and older) populations in neighboring states j on the opioid mortality rate in state i is negative

with a magnitude of 1.06476 and 1.2530, respectively, implying to reduce opioid mortality in i. This

could arise from either product market impacts of the populations staying in neighboring states or

from neighboring states economies, or perhaps networks between suppliers in neighboring states and

own states. Similar arguments apply for the poverty, the unemployment and opioid prescription

rates, resulting, however, in much lower magnitudes (−0.1619, −0.6805 and −0.0336) in comparison

with the age-specific indirect effects.

Moreover, we see four positive spillover effects that are significantly different from zero. The

effects of White, Asian and Hispanic subpopulations in neighboring states j is positive (0.2851,

0.9952 and 0.8889), suggesting to increase the opioid mortality rate in state i. The same happens

with the Lower Income variable that shows a spillover effect 0.2680. These results are not entirely

expected, but the reader should note that the relationship being estimated is an unidentified reduced

form relationship.

Indirect effects have larger magnitudes than the direct effects. But it must be noted that the

indirect effects are cumulated spillovers where cumulation takes place over all neighboring states

j ̸= i, neighbors to the neighboring states, and so on. While this may seem counter-intuitive, the

indirect effect falling on any single state would be generally much smaller, consistent with spillovers
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being a ’second-order’ effect. Also the largest indirect effects would fall on nearby states. It is the

cumulation of the spatial spillovers over all the states that leads to relatively larger indirect than

direct effects.

Finally it should be noted that for matter of completeness Table 2 also lists the total effects

that are defined as sum of the direct and indirect effects estimates. Inference statistics is based on

the sum of two coefficients, β̂ + θ̂, and a proper measure for dispersion of this sum of coefficients.

This measure can be constructed from the MCMC draws. A final point worth mentioning is that

a focus on direct rather than total impacts that include spatial spillover effects would lead to an

underestimate of the impacts.

4 Closing Remarks

This paper emphasizes the importance of employing a spatial Durbin panel data model for quanti-

fying the impact of a set explanatory variables on opioid mortality rates in the US. The empirical

model uses a pool of 49 US states over six years from 2014 to 2019, and a k=8 nearest-neighbor ma-

trix to represent the topological structure between the states. Calculation of the direct (own-state)

and indirect (spatial spillover) effects of the explanatory variables is based on Bayesian estimation

and inference. The effects estimates reflect a proper interpretation of the marginal effects of the

nonlinear model that involves spatial lags of the dependent and independent variables. This study’s

methodology and resulting findings provide a useful template for future empirical work using other

geographic locations or shifting interest to other pandemics.

Our study has produced several interesting empirical results that carry some policy implications

of interest for policy-makers and government agencies alike. First, evidence suggests that opioid

mortality depends on characteristics of the state itself (direct impact), and on those of nearby states

(indirect impact). Second, direct impacts are important, but externalities or (cross-state) spatial

spillovers are more critical. In fact, there is empirical evidence that indirect effects of the poverty rate

in neighboring states, for example, has an impact five times larger than the direct impact. When

assessing the relative costs versus benefits of regional policies aiming to reduce opioid mortality,

focus on direct (beneficial) rather than total (beneficial) effects, including spatial spillover benefits,
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would lead to underestimating the benefits to society or the returns to such policies. Third, a state’s

sociodemographic structure (age and race) is essential. Economic distress of a state covered by the

poverty rate, variable of lower income and unemployment rate are significant too, but comparatively

less so as indicated by the total impact magnitudes.

A few limitations to our study should be noted. First, all the inferences are made conditional

on the data used. The analysis is based on data reported on death certificates which we assume to

be correct, but acknowledge they are imperfect. Death certificates may classify causes of death, and

results may be biased by geographic heterogeneity in cause-of-death reporting if misclassification

existed and/or changed over time and across states (see Alexander et al. 2018). Second, our pre-

scribing opioid data covers only prescriptions for Medicare and Medicaid patients, and underscores

the use of prescription opioids. This underscoring may be downward biasing the effects estimates

of the prescription opioid supply variable. Finally, scalar summary effect measures provide in-

formation on the typical state rather than individual states. This may obscure variations in the

direct, indirect, and total effects over space that would be of special interest to policy-makers and

government agencies. Further explorations with observation-level direct, indirect, and total effects

would produce additional insights to better understand regional differences in impact estimates that

would be important for developing prevention and intervention strategies.
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