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Abstract

Spatial models deals primarily with unobserved phenomena
such as spillovers, transboundary competition, knowledge �ows,
etc. However, rarely does the user know about how these events
operate in practice. This is a problem because these e¤ects are re-
quired to build the model. Traditionally the gap has been solved
by providing externally this information, in the form of a weight-
ing matrix which must be speci�ed beforehand. It is obvious that
further analysis is contingent on that decision. Our purpose is to
o¤er some help to the user in the crucial decision of building a
weighting matrix for his/her spatial equation using a Generalized
Method of Moments approach.
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1 Introduction

Spatial models deal frequently with unobserved phenomena such as spillovers
e¤ects, transboundary competition or cooperation relations, knowledge
and other intangible �ows. The user rarely knows about how these
events operate in practice, although very often they are key elements in
the speci�cation but they are required to build the model. Traditionally
the gap has been solved by providing externally the required informa-
tion, in the form of a weighting matrix that re�ects some priors from
the user.
Although reasonable, there has been little consensus on the suitabil-

ity of this solution, and this raised the W issue. The debate became
stronger after the work of Ord (1975) because of its strong emphasis on
the task of modelling spatial relationships. It is evident that, in order to
model, we need good proxies to describe the way agents interact accross
space. Later on, Anselin (1988, 2002) put theW issue in the very cen-
tre of the debate about speci�cation of spatial models, which requires
something more robust than just user beliefs. The pressure for more con-
sistent spatial speci�cations favoured the appearance of an increasingly
specialized literature onW based on more objective fundaments.
The purpose of the W issue is clear: we have to �to de�ne for any

set of points or area objects the spatial relationships that exist between
them�as stated by Haining (2003, p.74). The problem is how should
that be done.
Roughly, we may distinguish two approaches to this question: (i)

specifyingW exogenously; (ii) estimatingW from data. The exogenous
approach is by far the most common and includes, for example, use of a
binary contiguity criterion, k-nearest neighbours, kernel functions based
on distance, etc. The second approach uses the topology of the space and
the nature of the data, and takes many forms. We �nd ad-hoc procedures
in which a prede�ned objective guides the search such as the maximiza-
tion of Moran�s I in Kooijman (1976) or the local statistical model of
Getis and Aldstadt (2004). Benjanuvatra and Burridge (2015) develop
a quasi maximum-likelihood, QML, algorithm to estimate the weights
inW assuming partial knowledge about the form of the weights. More
�exible approaches are possible if we have panel information such as
in Battacharjee and Jensen-Butler (2013) or Beenstock and Felsenstein
(2012). Endogeneity of the weight matrix is another topic introduced
recently by Kelejian and Piras (2014) and Qu and Lee (2015). This is
a promising avenue for the debate about W, which connects with the
concept of coevolution put forward by Snijders et al (2007) whose basic
assumption is di¢ cult to object: in the long run, the connectivity of the
network must evolve with the rest of the system and, in particular, with
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the endogenous variable of the model. The recent literature on spatial
econometrics is developping according to the second approach, but most
part of the applied research still relies on the exogenous approach.
Another question of concern in this debate come from the criticisms

of Gibbons and Overman (2012), when they say that most spatial models
are not identi�ed because the network where the agents interact are not
identi�ed. The only way to attain identi�cation is through the speci�ca-
tion of a exogenousW weighting matrix, which is the cause of frequent
(weak) identi�cation problems in the models; this �aw extends to the
instruments, moment conditions, etc. There is little to say in relation
to this point that we also share; in fact, in spite of specifyingW exoge-
nously, there is an overlapping between the autocorrelation coe¢ cients
(i.e., the typical � parameter) and the pattern in which the interaction
happens (the matrix W). The two elements are only jointly identi�ed
(Hays et al., 2010) and can not be separated. In fact, this mixture is
in the origin of the discussion about what is the most adequate ver-
sion of the weighting matrix (raw data, row-standardized, eigenvalue-
standardized, etc).
Our purpose is to o¤er some help to the user in the crucial decision

of building a weighting matrix for his/her spatial equation. We show
that in cases where the user has a panel database with a long time series
and small cross-sections and the assumption of symmetry of the weights
of W is reasonable, this matrix can be extracted from the covariance
matrix of the model (either that of the endogenous variable or from the
residuals). Section 2 discusses the unequivocal relation that exists in
a typical spatial econometric model between the covariance matrix and
the weighting matrix, which allows us, under speci�c circumstances, to
obtain the second matrix from the former. Section 3 formalizes that
discussion in a GMM framework. Section 4, shows the results of a small
Monte Carlo experiment solved in order to check the results put forward
in relation to the GMM approach. Section 5 concludes.

2 The Covariance and the Weighting matrix

Let us assume that we have a panel dataset made of n spatial units ob-
served during T periods. In that panel we have information of variable
y and k covariates, x. The sequence is complete; that is, there are no
missing data. Moreover, we are pretty sure that there is spatial structure
in the sample because, for example, the CD test of Pesaran (2004) has
rejected the null hypothesis of no correlation among the cross-sectional
units. The hypothesis of common factors (strong spatial correlation)
has been discarded and we are thinking in terms of mutual in�uences
between the spatial units (weak spatial correlation). As said, the litera-
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ture on spatial econometrics (Harris et al., 2011) advocates for the use of
the so-called weighting matrix to capture the network of cross-sectional
dependences. This matrix is required to advance wiht the data in order
to specify and estimate a model for y. However, it is unusual to have
enough, uncontroversial information to build the matrix (i.e., Corrado
and Fingleton, 2012). Our suggestion is to exploit the direct link be-
tween the covariance and the weighting matrix to approach the last one
using information in the covariances. Under certain circumstances, this
can be done quite directly.
Let us begin with the case of an spatial autorregresive (SAR) process,

stable across time:

yt = �Syt + ut; ut � i:i:d: (0;�) ; t = 1; 2; :::; T (1)

yt is a (n� 1) vector observed in period t whereas S is a (n� n)
matrix of unobserved weights and � a diagonal matrix re�ecting the
heteroskedastic nature of the error terms, � = diag (�21;�

2
2; :::;�

2
n). The

covariance matrix of vector y is:

�y = (I� �S)
0�1� (I� �S)�1 (2)

The sampling covariance,
�b�y = �Tt=1yty0t=T�, under these circum-

stances, is a consistent estimate of �y, so p lim b� = �y. The sam-
pling covariance contains n(n+1)

2
di¤erent estimates whereas the number

of unknowns in (2) is potentially larger: n variances in �, n(n � 1)
terms in S (as usual, we assume, that the diagonal terms are zero,
sii = 0; i = 1; :::;n) . As said, if the weighting matrix is unknown,
the spatial dependence parameter � is not identi�ed; to simplfy, in the
following we assume that this parameter is subsumed into the weights
so that �S =W. Without loss of generality, in the following we assume
that the dependence parameter is embodied in the weighting matrix.
Another common assumption in applied work is that the weights inW
are symmetric (this assumption is not without criticism; indeed, sym-
metry simpli�es the treatment of the data at the cost of assuming an
often no realistic assumption). In sum, the number of unknowns in the
right hand side of (2) is exactly n(n+1)

2
: there are n variances and n(n�1)

2

di¤erent weights in W. This means that the spatial weights and the
variances can be recovered from the sampling covariances.
As an example, let us assume a very simple case in which n = 4. The

sampling covariance is a (4�4) matrix which allows to write the inverse
of (2) as:

��1y = (I�W)��1 (I�W) (3)
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We obtain the following system of nonlinear equations:



11
= 1

�21
+

!212
�22
+

!213
�23
+

!214
�24



22
= 1

�22
+

!221
�21
+

!223
�23
+

!224
�24



33
= 1

�23
+

!231
�21
+

!231
�22
+

!234
�24



44
= 1

�24
+

!241
�21
+

!241
�22
+

!243
�23



12
= �!12

�21
� !12

�22
+ !13!23

�23
+ !14!24

�24



13
= �!13

�21
� !13

�23
+ !12!32

�23
+ !14!34

�24



14
= �!14

�21
� !14

�24
+ !12!24

�22
+ !13!43

�24



23
= �!23

�22
� !23

�23
+ !21!31

�21
+ !24!34

�24



24
= �!24

�22
� !24

�24
+ !12!41

�21
+ !23!43

�24



34
= �!34

�23
� !34

�24
+ !31!41

�22
+ !32!42

�24

9>>>>>>>>>>>>>>>>>>>=>>>>>>>>>>>>>>>>>>>;

(4)

where 

ij
is the (i; j) element of ��1y , �

2
j is the jth variance in �

and !ij the corresponding (symmetric) weight in W. This is a system
of 10 equations and 10 unknows, with a unique solution (as said, the
system is compatible and determined). Using the sampling covariances,
the corresponding estimates of � and W are consistent as long as b�y
remains as a consistent estimator of �y. For a more general case of n
spatial units, we obtain:



ii
= 1

�2i
+
Pn

i6=j
!2ij
�2j
; i = 1; 2; :::; n



ij
= �!ij

�
1
�2i
+ 1

�2j

�
+
Pn

l 6=i
l 6=j

!il!jl
�2l
; i < j

9=; (5)

Let us assume now that the dependence appears in the errors of a
(linear) model so that:

yt = xt� + ut; ut = �Sut + "t; "t � i:i:d: (0;�) ; t = 1; 2; :::; T (6)

xt is a (n� k) matrix observed in period t and � the corresponding
vector of coe¢ cients; � remains unidenti�ed so �S =W. The most fa-
vorable situation for our purposes is that the regressors are time station-
ary (constant mean and variance) and have no spatial structure. Under
these circumstances, their impact is limited to the variances in the main
diagonal of �y (in other words, the set of covariances are unaltered):

�y =V (yt) = V (xt� + ut) = V
�
�kj=1xjt�j + ut

�
= (7)

=�kj=1�
2
jV (xjt) + V (ut) =

�
�kj=1�

2
j�
2
xj

�
In + �u; t = 1; :::; T
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where �2xj is the variance of the j-th regressor and �u = (I�W)�1� (I�W)�1.
However, the impact in the variances extends throughout the system of
(4), which means that the sample analog of (4) will produce biased esti-
mates of � andW. It is clear that the list of exogenous regressors in the
right hand side of (6) requires of a preliminay LS estimation to account
for their e¤ect. Then, the sampling covariance matrix of (3) should be
that of the LS residuals. This preliminary step is required to attain con-
sistency because now there are n(n+1)

2
+2k unknowns in (6) and we need

of 2k additional restrictions: k come from the LS estimation whereas
the other k are the sampling variances of the k covariates
The situation becomes intractable if the x covariates are spatially

dependent; then:

�y =
�
�kj=1�

2
j�xj

�
+ �u; t = 1; :::; T (8)

In this case, the covariance matrix of y is a mixture of the covariance
matrices of the regressors and the covariance matrix of the error terms.
The case of an Spatial Lag Model (SLM) does not facilitate the

discussion, although is solvable under certain circumstances. Assuming
that:

yt = �Syt + xt� + ut; ut � i:i:d: (0;�) ; t = 1; 2; :::; T (9)

The covariance matrix of vector y is:

�y = (I� �S)�1
��
�kj=1�

2
j�
2
xj

�
In +�

�
(I� �S)�1 (10)

In fact, the situation is similar to that of (3): the covariance matrix
of y, �y, is obtained pre and postmultiplying a diagonal matrix, �x;u =��
�kj=1�

2
j�
2
xj

�
In +�

�
, by (I� �S)�1. Once again, � is not identi�ed

so let us call so �S =W. There are n(n�1)
2

unknowns in W and n
composite variances in the diagonal of �x;u. Moreover, we have

n(n+1)
2

sampling covariances in b�y, so the system is determined. We will obtain
n composite variances, such as

�
�kj=1�

2
j�
2
xj

�
+ �2i ; i = 1; 2; :::; n and the

n(n�1)
2

weights inW. However, it will not be possible to disentangle the
variance of the error terms, �2i ; i = 1; 2; :::; n, form the linear combination
of the variance of the regressors,

�
�kj=1�

2
j�
2
xj

�
. If the regressors are

spatially correlated, such as V (xj) = �xj , the problem is not solvable:

�y = (I�W)�1
�
�kj=1�

2
j�xj +�

�
(I�W)�1 (11)

Finally, let us return to the case of expression (1). In some cases it
is possible to assume that the variance of the error terms is the same for
the n spatial units so that:
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yt = �Syt + ut; ut � i:i:d:
�
0;�2uIn

�
; t = 1; 2; :::; T (12)

Proceeding in the same way, the unknowns are now n(n�1)
2

symmetric
weights inW =�S plus a common variance, �2u, whereas the number of
di¤erent terms in the sampling covariance matrix continues to be n(n+1)

2
.

Now the system is overidenti�ed. In fact there are n� 1 overidentifyng
restriccions. Let us write the sample analog of equation (3) for this case

b��1y = b��2u �
I� cW��

I� cW�
(13)

b�2u is, as usual, a scale factor for the observed covariances. Rear-
ranging the last expression, we obtain another nonlinear system on the
sampling covariances:

b

11
= 1b�2u (1 + b!212 + b!213 + b!214)b


22
= 1b�2u (1 + b!221 + b!223 + b!224)b


33
= 1b�2u (1 + b!231 + b!232 + b!234)b


44
= 1b�2u (1 + b!241 + b!242 + b!243)b


12
= 1b�2u (�2b!12 + b!13b!23 + b!14b!24)b


13
= 1b�2u (�2b!13 + b!12b!31 + b!14b!34)b


14
= 1b�2u (�2b!14 + b!12b!42 + b!13b!43)b


23
= 1b�2u (�2b!23 + b!21b!31 + b!24b!34)b


24
= 1b�2u (�2b!24 + b!21b!41 + b!23b!43)b


34
= 1b�2u (�2b!34 + b!31b!1 + b!32b!42)

9>>>>>>>>>>>>>>>>>>=>>>>>>>>>>>>>>>>>>;

(14)

We have 10 equation but only 7 unknowns which means that the
system is compatible and overidenti�ed. The corresponding estimates
from the nonlinear system of (14) will be consistent under the assump-
tion that the sampling covariance matrix, b�y, is also consistent. The
extension to the case of n spatial units, is inmediate:



ii
= 1

�2u
(1 +

Pn
i6=j !

2
ij); i = 1; 2; :::; n



ij
= 1

�2u
(�2!ij +

Pn
l 6=i
l 6=j
!il!jl); i < j

)
(15)

where we have n(n+1)
2

equations but only n(n�1)
2

+ 1 unknowns.

3 A GMM approach.

Let us assume now a SMA process like the following (results are similar
for the previous SAR cases):

yt = "t + �S"t = "t +W"t; "t � N (0;�)
t = 1; 2; ::::; T

(16)
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As usual, the weights in the S symmetric matrix are unknown, which
means that � is not identi�ed, and we assume a diagonal matrix for the
covariances of the error terms, �, is diagonal. The covariance matrix of
vector yt, 8 t, is an (n� n) matrix such as:

�y =

0BBBBBBBB@

�21 + �
n
j 6=1�

2
j!

2
ij !12 (�

2
1 + �

2
2)+ :::: !1n (�

2
1 + �

2
n)+

�nj 6=1;2�
2
j!1j!2j :::: +�nj 6=1;2�

2
j!1j!nj

!12 (�
2
1 + �

2
2)+ :::: !2n (�

2
2 + �

2
n)+

�nj 6=1;2�
2
j!1j!2j �21 + �

n
j 6=2�

2
j!

2
ij :::: +�nj 6=1n2�

2
j!2j!nj

:::: :::: :::: ::::
!1n (�

2
1 + �

2
n)+ !2n (�

2
2 + �

2
n)+ ::::

�nj 6=1;2�
2
j!1j!nj �nj 6=1n2�

2
j!2j!nj :::: �2n + �

n�1
j=1�

2
j!

2
ij

1CCCCCCCCA
(17)

� is the n(n+1)
2

�1 vector of unknown parameters for this problem ( n
variances plus n(n�1)

2
weights) such that � = (�21; :::; �

2
n; !12; :::; !1n; !23:::; !n�1;n)

0;
�0 is the vector of parameters that intervenes in the Data Generating
Process, DGP. The same as before, b�y denotes the sampling covariance
matrix (centered if necessary):

b�y =
0BB@

�Tt=1y
2
1t=T �Tt=1y1ty2t=T :::: �Tt=1y1tynt=T

�Tt=1y1ty2t=T �Tt=1y
2
2t=T :::: �Tt=1y2tynt=T

:::: :::: :::: ::::
�Tt=1y1tynt=T �Tt=1y2tynt=T :::: �Tt=1y

2
nt=T

1CCA =

0BB@
b
11 b
12 :::: b
1nb
12 b
22 :::: b
2n
:::: :::: :::: ::::b
1n b
2n :::: b
nn

1CCA
(18)

The random vector y and the parameter vector �0 satisfy the
n(n+1)
2

population moment conditions:

E [f(y; �0)] =

0BBB@
b
ii � �2i � �nj 6=i�2j!2ij

i = 1; 2:::; nb
ij � !ij ��2i + �2j��Pn
l 6=i
l 6=j
�2l !il!jl

i; j = 1; 2:::; n; i < j

1CCCA = 0 (19)

The model is exactly identi�ed and can be solved according to the
well-known Pearson�s Method of Moments. There is a unique solution
but the model is non-linear, which can hinder its resolution specially
with increasing values of n.
The situation is more interesting if the SMA process of (16) has

constant variance, so that matrix � can be written as �2In. Introducing
this restriction in (19) we obtain the following set of n(n+1)

2
population
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moment conditions:

g (�0) = E [f(y; �0)] =

0BBBB@
b
ii � �2 �1 + �nj 6=i!2ij�

i = 1; 2:::; nb
ij � �2�2!ij +Pn
l 6=i
l 6=j
!il!jl

�
i; j = 1; 2:::; n; i < j

1CCCCA = 0 (20)

The number of unknown parameters in �0 = (�2; !12; :::; !1n; !23:::; !n�1;n)
is n(n�1)

2
+1 so there are (n�1) overidentifying restrictions. The problem

can be solved using GMM estimators:

Min
�
QT (�) =

1

T 2
�
�Tt=1f(yt; �)

0	MT

�
�Tt=1f(yt; �)

	
(21)

beingMT a positive semi-de�nite matrix which converges to a posi-
tive de�nite matrix of constants For the problem to be well de�ned we
need the following set of assumptions:

� The sample space isY 2 Rn and the random vectors fyt; �1 < t <1g
are strictly stationary.

� The space parameter is � and �0 is an interior point of �. The
n(n+1)
2

population moment conditions E [f(y; �0)] = 0 are ful�lled
in this point.

� Global identi�cation in the sense thatE
�
f(y; �)

�
6= 0 where � 6= �0.

The condition can be split into two clauses: (i) there is a unique
correspondence between the covariance matrix and the �scaled�
weighting matrix �W, which was proven in Battacharjee and Jensen-
Butler (2013) and (ii) the moment conditions only hold for �0,
which is di¢ cult to prove because of the nonlinear relation of the
weights and the variance term.

� Regularity conditions on the �rst derivatives of the vector of mo-
ment conditions. Speci�cally, @f(y; �)=@�0 exists, it is continuous
in �, and E [@f(y; �)=@�0] exists and is �nite.

The model in (16) is nonlinear so the �rst order condition for mini-
mizing (21) yields to a system of nonlinear equations; in general:

1

T 2

�
�Tt=1

@f(yt; �)

@�0

�0
MT

�
�Tt=1f(yt; �)

	
= 0 (22)

whose solution is the set of GMM estimation. Under the assump-
tions above and for the case of �nite (small) n and increasing T , these
estimators are consistent, so:
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b�T p�! �0 (23)

Moreover, if the sample moments verify a Central Limit Theorem,
the GMM estimators converge asymptotically to a normal distribution:

T 1=2
hb�T � �0i d�! N(0;RSR0) (24)

where S is the limiting covariance matrix of the sample moments,
limT!1 V ar

�
T�1=2�Tt=1f(yt; �

�
= S, and R is a

n
n(n�1)
2

+ 1
o
� n(n+1)

2

matrix such that: R =(G0
0MG0)

�1G0
0M. M is the convergence matrix

of MT and G is the convergence matrix of matrix of �rst derivatives of
the sample moments, GT (�0) =

1
T

h
�Tt=1

@f(yt;�0)
@�0

i
; this matrix is n(n+1)

2
�n

n(n�1)
2

+ 1
o
whose details can be found in Appendix I.

Hansen (1982) proves that there is there is an optimal choice forMT ,
which corresponds to in the inverse of the covariance matrix of the vector
of population moment conditions, MT =

�
V ar

�
T�1=2�Tt=1f(yt; �

�	�1
=

S�1. This matrix produces, on average, GMM estimators with minimum
variance, in which case:

T 1=2
hb�T � �0i d�! N(0;

�
G0
0S

�1G0

��1
) (25)

The covariance matrix of the sample moments is unknown, S =E
�
f(yt; �)f(yt; �)

0�
,

and should be estimated beforehand. Assuming that the sample mo-
ments ff(yt; �)g is a serially uncorrelated sequence the sample analog is
a logic decision:

bST = 1

T
�Tt=1f(yt;

b�T )f(yt;b�T ) (26)

This is a consistent estimate, as shown by White (1994). For the
case of an autocorrelated and/or heteroskedastic sequence of sample
moments, the HAC framework o¤ers a convenient way to produce con-
sistent estimates under relatively weak assumptions on the structure of
the process (Newey and West, 1994). In sum, as usual in the GMM
literature, we �nish with the iterated GMM estimator, so that for the
i-th step:

i If i = 1: use a sub-optimal weighting matrix such as MT = IK be-
ing K = n(n+1)

2
the number of restrictions. The estimator thus

obtained, b�(1)T , is consistent and allows us to obtain a provisional
estimate of the covariance matrix, bS(1)T .
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ii Obtain the corresponding GMM estimates by iterating the procedure,

so that in the i-th step MT =
nbS(i�1)T

o�1
. We would need also of

convergence rules to stop the process, so that if



b�(i)T � b�(i�1)T




 < � �
the algorithm has converged and the GMM estimator is b�T = b�(i)T .
On the contrary, the algorithm goes to the (i+ 1) iteration.

4 Testing for changes in W

The assumption of structural stability plays an important role in the
GMM estimation. It is clear that if this hypothesis does not hold, the
estimates are not consistent and the inference will be missleading. The
present Section centers on this assumption. It is meaning.is clear in the
sense that it implies that (19) holds for the whole sample; however, the
alternative is more di¢ cult to articulate because you have to specify
how and when the model changes. There are multiple ways by which
a model can have breaks (variance, parameters, functional form, etc.),
although we focus on the case of W for which there are few proposals
in the literature (for example, Angulo et al, 2017a and b). In relation to
when, the GMM literature has focused mainly on the case of a discrete
change at a single known point in the sample, the so-called break point.
However, since the work of Andrews (1993), there is a growing literature
which considers also the case where the location of the break point is
unknown. We are going to explore both ways, in relation to W, but
considering only one break because of estimation constraints.

4.1 The case of a known break point

As indicated before, the null hypothesis states that the assumption (19)
holds throughout the sample. The alternative hypothesis indicates that
there is a (single) known break point, in period Tb where 1 � Tb � T .
and the user knows its location. Hall (2005) introduces a interesting
distinction between identifying and overidentifying, that is very useful
for us. The question is that we have q = n(n+1)

2
moment conditions to

estimateK = n(n�1)
2
+1 parameters in the homoskedastic case of (16). K

of the q conditions are used to identify the parameters and are imposed
in the estimation algorithm. The null hypothesis, related to the set of
identifying conditions, reads as:
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HI;KB
0 (Tb) :

P1 (�0)
�
S1 (�0)

�1E1 [f(yt; �0)]
	
= 0; 1 � t � Tb

P2 (�0)
�
S2 (�0)

�1E2 [f(yt; �0)]
	
= 0; Tb + 1 � t � T

�
(27)

wherePj (�0) = Fj (�0)
�
Fj (�0)

0Fj (�0)
��1

Fj (�0)
0, Fj (�0) = Sj (�0)

�1=2Gj(�0)

beingGj(�0) = Ej

h
@f(yt;�0)
@�0

i
and S1 (�0) = limT!1 V ar1

h
T
�1=2
b �Tbt=1f(yt; �)

i
1.

The subindex denotes the corresponding subperiod. The identi�ca-
tion conditions imply that the least squares projection of the stan-
dardized moments,

�
Sj (�0)

�1Ej [f(yt; �0)]
	
a (q � 1) vector, onto the

column space of Fj (�0), a (q � K) matrix, is equal to zero or that
rank (Pj (�0)) = K In sum, the hypothesis of (27) states that the iden-
ti�cation conditions remains the same in both subperiods, which extends
to the parameters (weights in our case). Following Andrews (1993), a
Wald, WA, Lagrange Multiplier, LM , or Likelihood Ratio-type, DJ ,
tests can be used to test this form of structural stability:23

WA(Tb) = T
hb�1;T � b�2;Ti0 VWA(Tb)

�1
hb�1;T � b�2;Ti (28)

LM(Tb) = T
Tb

T � Tb

n
g1(b�T )0bS�1T (b�1;T )GT (b�T )o0 VLM(Tb)�1 ng1(b�T )0bS�1T (b�1;T )GT (b�T )o

(29)

DJ(Tb) = T
n
JT (b�T ;b�T ;Tb)� J1;2(b�1;T ;b�2;T ;Tb)o (30)

where J means the Sargan (1958) test of overidenti�cation restric-
tions4.
The complementary overidentifying restriccions to (27) can be stated

as:

HO;KB
0 (Tb) :

N1 (�0)
�
S1 (�0)

�1E1 [f(yt; �0)]
	
= 0; 1 � t � Tb

N2 (�0)
�
S2 (�0)

�1E2 [f(yt; �0)]
	
= 0; Tb + 1 � t � T

�
(31)

1Similarly S2 (�0) = limT!1 V ar2

h
(T � Tb)�1=2 �Tt=Tb+1f(yt; �)

i
2VWA(Tb)

�1 = Tb
T

n
G1(b�1;T )0bS�11 (b�1;T )G1(b�1;T )o�1 +

T�Tb
T

n
G2(b�2;T )0bS�12 (b�2;T )G2(b�2;T )o�1

3VLM (Tb) =
n
GT (b�T )0bS�1T (b�T )GT (b�T )o

4JT (b�T ;b�T ;Tb) = TgT (b�T )0bS�1T (b�T )gT (b�T )
J1;2(b�1;T ;b�2;T ;Tb) = T nTbT g1;T (b�1;T )0bS�11;T (b�1;T )g1;T (b�1;T ) + T�Tb

T g2;T (b�2;T )0bS�12;T (b�2;T )g2;T (b�2;T )o
12
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where Nj (�0) = Iq � Pj (�0) ; j = 1; 2. These q � K conditions
have been ignored in the estimation but they have helped to improve
estimation e¢ ciency. In this case we are pointing to changes not only
in the weights but that extend to other features of the model (type of
spatial dependence, perhaps heteroskedasticity, functional form, etc.).
Hall and Sen (1999) propose the following test statistic:

OT (Tb) = O1;T (Tb) +O2;T (Tb)

O1;T (Tb) = T
n
Tb
T
g1;T (b�1;T )0bS�1T (b�1;T )g1;T (b�1;T )o

O2;T (Tb) = T
n
T�Tb
T
g2;T (b�2;T )0bS�1T (b�2;T )g2;T (b�2;T )o (32)

The three identi�cation structural stability test have an asymptoti-
cally �2 (K) distribution whereas the stability overidenti�cation test of
(32) follows asymptotically a �2 (q �K). More important, both set of
tests (identi�cation and overidenti�cation) are asymptotically indepen-
dent. In sum, the null hypothesis of structural stability must combine
both clauses of identi�cation (parameters and weights inW) and overi-
denti�cation stability (structure of the model), therefore we can state,
for the case of a known break point, that:

HKB
0 (Tb) : H

I;KB
0 (Tb)&H

O;KB
0 (Tb) (33)

4.2 The case of an unknown break point
In this case, we are interesting in testing if there are symptoms of insta-
bility in any point in the sample, but we have not any a priori. To begin
with, let us introduce some notation that it is usual in the literature of
structural breaks. First, we normalize the break point space to the range
(0; 1), by de�ning a new parameter �, 0 � � � 1 such that Tb = [�T ],
where [�] means the integer part. Moreover, it is habitual to trim this
range to an smaller interval to avoid unexpected results at both extremes
of the interval for �; � 2 � = [0; 15; 0:85] is a rather common decision.
Continuing with the discussion in last subsection, we can write the null
hypothesis for this case:

HUB
0 (�) : HI;UB

0 (�)&HO;UB
0 (�) ; � 2 � = [0; 15; 0:85] (34)

The meaning and interpretation of the two clauses of the null co-
incide with that of (33). The testing sequence is a natural extension
of the �xed break point framework, but obtaining the corresponding
statistics for each possible value of � in the selected range, �. This pro-
duces a sequence of statistics indexed by � and inference can be based on
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such sequence. Andrews and Ploberger (1994) suggest three alternatives,
among which the Supremum value of the sequence is the most popular
(because, for example, the value of b� where the sequence attains its
maximum, appears to be a consistent estimation of the break point frac-
tion). For example, focusing on the identifying restrictions, HI;UB

0 (�),
and the Likelihood Ratio-type test, DJ , they show that, under general
conditions, the optimal statistic is:

Sup DJT = sup
�2�

fDJ(�)g (35)

The limiting distribution of the Sup DJT statistic has been tabu-
lated in Andrews and Ploberger (1994); the same applies for the Wald
and the Lagrange Multiplier statistics as well as for the Average and
Exponential versions of the Supremum statistic. The OT statistic of
(32) can be extended, along the same lines, for testing the stability
of overidentifying conditions when the location of the break point is
unknown. Hall and Sen (1999) suggest obtaining the sequence of OT

values, indexed by �, and use the corresponding Supremum function
(other alternatives are the Average and the Exponential functions),
whose limiting distribution they tabulate

Sup OT = sup
�2�

fOT (�)g (36)

Finally, the strategy proposed by Hall and Sen (1999) to detect the
source of instability in the model is as follows:

1. If the unknown break point tests fail to reject the null hypothe-
sis, there is evidence that the model is stable, both in parameters
(weight matrix) and structure of dependence.

2. If the unknown identifying tests reject the null hypothesis and the
unknown overidentifying tests are signi�cant, there is evidence of
parameter variation: the weight matrix is instable but the struc-
ture of dependence remains the same.

3. All other cases should be interpreted in the sense that there is
instability that involves more than the parameters alone.

5 Description of the Monte Carlo

This part of the paper is devoted to the Monte Carlo conducted in or-
der to calibrate the performance of the GMM procedure to estimate an
unknown composite weighting matrixW and to test for their stabilitity
over the sampling range. The procedures described in previous Sections
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are very demanding in terms of computing so our focus is on small sam-
ple sizes; speci�cally all of our experiments involve a large T and a very
small n. Our purpose is to extend the experimental framework in the
future.
We are going to simulate simple models, like the SMA in (16) or

the correspondig SAR, in a panel setting; for the moment, we do not
introduce unobserved terms in the panel and the analysis is con�ned to
the homoskedastic case. For the SMA case:

yt = "t + �S"t = "t +W"t; "t � N (0;�)
t = 1; 2; ::::; T

(37)

yt and "t are (n� 1) vectors and S a (n� n) matrix to be de�ne
below;� is the unidenti�ed parameter of spatial dependence. The error
terms are obtained from a normal distribution: "it � i:i:d:N (0;�2"), so
that � =�2"In with �

2
" = 1.

As said, the weighting matrix, S, is unknown and we are trying to es-
timate it from the data using the GMM procedures described before.We
only assume that the weights in S are symmetrical, non-negative (this
assumption is not required and it is made only to simplify) and equal to
zero in the leading diagonal of the matrix, sii = 0; i = 1; 2; ::::; n.
The main parameters of the experiment are the following:

� Only four di¤erent, small cross-sectional sample sizes, n, have
been used n 2 f4; 8; 12; 16g. The number of parameters that
we have to recover from the GMM algorithm are, respectively,
K = f7; 29; 67; 121g so K is proportional to n2 , K = 1

2
O(n2).

� The number of cross-sections in the panel, T , is intentionally large
because of GMM requirements, T 2 f500; 1000g.

� The values for the coe¢ cient of spatial dependence, �, take only
nonnegatives values, � = f0:2; 0:5; 0:8g.

� Finally, the weights in S are obtained from a uniform distribution,
sij � U(0; 1); i; j = 1; ::::; n; j > i.

� Each case has been replicated 100 times.

The second part of the experiment is devoted to testing for the hy-
pothesis of structural stability in the model underlying the data. For the
moment, we have preliminary results only for the case of a known break
point (the unknown break point case is still under process). The break
point is always located in the middle of the sample, so Tb 2 f250; 500g
and the break may refer to three cases:
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(i) Case 1. Change in the weighting matrix alone so that in the �rst
period, t � Tb, intervene a set of weights di¤erent from that that act in
the second period, t > Tb. Di¤erent means a di¤erente draw from the
Uniform distribution; the value of the coe¢ cient of spatial dependence,
�, has been keept �xed at 0:8.
(ii) Case 2. Change in the mechanism of spatial dependence from

SMA in the �rst period to SAR in the second. The weigthing matrix and
the coe¢ cient of spatial dependence remain the same (0:8 the second).
(iii) Case 3. Change in both aspects, the matrix and the mechanism

of spatial dependence, combining cases (i) and (ii).

5.1 Results of the Monte Carlo
Tables 1 and 2 summarize the main results of our Monte Carlo in relation
to the recovery, using GMM estimates, of the unobserved weights. The
tables show the Average Entropy Loss (EL) and the Average Frobenius
Loss (FL), averaging the 100 experiments for each case. The EL and FL
are de�ned as (Moscone et al., 2017):

EL = tr
�
B�1bB�� log(abs ���B�1bB���)� n (mc2)

FL =




B� bB


2
F

kBk2F
(38)

where B = In�W = In� �S and k�k2F means the Frobenius norm.
The two indicators with take lower values the better the GMM estima-
tion of the weighting matrix.

Table 1: Accuracy of the GMM estimates of the weights
SMA case
T = 500

n = 4 n = 8 n = 12 n = 16
� EL FL EL FL EL FL EL FL
0:2 1.2411 0.3528 1.6220 0.3888 1.8447 0.4288 2.0754 0.4921
0:5 0.7651 0.2565 1.3107 0.2772 1.6448 0.3087 1.9660 0.3321
0:8 0.5548 0.1567 1.0689 0.1998 1.2148 0.2199 1.7655 0.2456

T = 1000
n = 4 n = 8 n = 12 n = 16

� EL FL EL FL EL FL EL FL
0:2 0.2287 0.1220 0.3988 0.1632 0.4399 0.2076 0.6543 0.2511
0:5 0.1642 0.0981 0.3290 0.1555 0.3587 0.1865 0.5446 0.2076
0:8 0.0987 0.0531 0.2456 0.1131 0.2875 0.1543 0.4124 0.1780
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Overall the results are as expected. In �rst place, it is clear that
the accuracy of the GMM algorithm improves strongly with T , so that
doubling this parameter from 500 to 1000 implies a reduction in the ac-
curacy indicators by more than half of their previous value. Lower values
of T (smaller than 500) produce, in general, inaccurate estimates except
in the case of a very low number of spatial units (4 to 8). Contrary, the
increase of the cross-sectional size leads to a growing complexity for the
GMM algorithm and worse results in terms of accuracy;the worsening
in the accuracy indicators is a little less inelastic that the improvement
observed in the case of an increase of T . The impact of the spatial co-
e¢ cient is also positive in the sense that the accuracy of the estimates
improves for higher values in this parameter. This result is somewhat
unexpected because the indicators used, EL and FL, are free-scale mea-
sures of discrepancy; apparently the magnitude of the covariance terms
(which increase with �) has a bene�cial impact on the functioning of the
GMM algorihm. Finally, the procedure work a little better in the case
of SAR processes; this is also unexpected because the only di¤erence
between the two cases lies in the inversion of the covariance matrix, as
indicated in (13).

Table 2: Accuracy of the GMM estimates. of the weights
SAR case
T = 500

n = 4 n = 8 n = 12 n = 16
� EL FL EL FL EL FL EL FL
0:2 1.1261 0.3111 1.4864 0.3762 1.6487 0.4288 1.8901 0.4921
0:5 0.6321 0.2423 1.2975 0.2464 1.3486 0.3087 1.7265 0.3321
0:8 0.3897 0.1426 0.9453 0.2081 1.0404 0.2199 1.4586 0.2456

T = 1000
n = 4 n = 8 n = 12 n = 16

� EL FL EL FL EL FL EL FL
0:2 0.1196 0.1096 0.1334 0.1603 0.2654 0.2212 0.5880 0.2563
0:5 0.0654 0.0801 0.1187 0.1514 0.2097 0.1804 0.3502 0.2002
0:8 0.0425 0.0335 0.1456 0.1043 0.1775 0.1437 0.2201 0.1521

As said, the second part of the Monte Carlo deals with testing the
assumption of structural stability in the spatial panel data model of
(16). Our preliminary results refer to the case of a known break point
located in the middle of sample, Tb 2 f250; 500g,with three types of
structural break (in the weights, in the form of the mechanism of spatial
dependence and in both aspects). The discussion is solved using two
statistics:
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� the DJ(Tb) Likelihood Ratio-type statistic of (30), asymptotically
distributed as a �2 (K) being K = n(n�1)

2
+ 1 to test the null

hypothesis of (27) of stability in the identifying conditions (that
is, estimated parameters).

� theOT (Tb) statistic of (32), asymptotically distributed as a �2 (q �K)
being K = n(n�1)

2
+1 and q = n(n+1)

2
to test the null hypothesis of

(31) of stability in the overidentifying conditions (that is, structure
of the model).

According to the strategy suggested by Hall and Sen (1999), and
described at the end of Section 4.2, we are going to accept the composite
null hypothesis of structural stability of (33) if both statistics, DJ(Tb)
and OT (Tb), are statistically not signi�cant. A second possibility of
interest emerges for the case of aDJ(Tb) statistics statistically signi�cant
combined with a low OT (Tb) statistic, not signi�cant, then the evidence
points to a problem of structural instability in the weights but not in
the mechanisms of spatial dependence. All other combinations should
be interpreted as revealing a problem of instability that involves more
than just the weights.
Main results are summarized in Table 3, which shows the percentage

of experiments with instability, simulated according to CASE 1, 2 or 3
that have been classi�ed as Structural Stability (SS), Structural Insta-
bility in the Weights (SIW) or Structural Instability (SI). At the top of
each panel appears the estimated size

Table 3: Structural stability test
T = 500

SIZE CASE 1 CASE 2 CASE 3
n SS SIP SI SS SIP SI SS SIP SI
4 0.09 0.03 0.82 0.15 0.04 0.06 0.90 0.02 0.00 0.98
8 0.12 0.01 0.74 0.25 0.01 0.07 0.92 0.01 0.01 0.98
12 0.15 0.00 0.65 0.35 0.00 0.09 0.91 0.02 0.03 0.95

T = 1000
SIZE CASE 1 CASE 2 CASE 3

n SS SIP SI SS SIP SI SS SIP SI
4 0.06 0.03 0.87 0.10 0.04 0.02 0.94 0.01 0.01 0.98
8 0.06 0.02 0.80 0.18 0.01 0.04 0.95 0.01 0.02 0.97
12 0.09 0.05 0.71 0.24 0.00 0.08 0.92 0.03 0.00 0.97

Overall, the results appear quite satisfactory for the case of a small
number of cross section and a large value of T . The testing strategy
is slightly oversized for the case of T = 500 but this excess tends to
be corrected with large values of T . The Hall and Sen strategy works
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reasonable well when the stability problem a¤ects only to the weights
of W; then the percentage of correct identi�cations (Case 1 experiment
classi�ed as SIP) �uctuates around 80%. Let us note that the estimated
probability that a Case 1 experiment is classi�ed as SS (structural sta-
bility) remains quite low, below the 5% threshold. As expected, Cases 2
and 3 tend overwhelmingly to be classi�ed as SI of structural instability.

6 Conclusions and future prospects

.
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Appendix I: Matrix of first derivatives of the vector of sample moments. 

 

 




