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Abstract

This paper incorporates spatial dependence into a neoclassical regional growth frame-

work with imperfect factor mobility. Using a sub-national global data set, the em-

pirical analysis consists of the implementation of multiple imputation techniques to

the estimation of a spatial Durbin panel model. Our results show that accounting

for spatial e�ects increases the estimated regional convergence rate. This provides

an explanation for puzzling �ndings in the related literature. Further, we obtain evi-

dence of a nonlinear relationship between the levels of national income and �nancial

development and the regional speed of convergence.
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1 Introduction

There is a recent trend in the economic growth and development literature towards

adopting a worldwide sub-national perspective that has resulted in the emergence of new

models and databases (Gennaioli et al., 2013, 2014; Mitton, 2016). Although these studies

put forward interesting hypotheses, they do not seriously take into account the presence of

spatial dependence as they use corrections that do not address underlying problems with

the regression speci�cation (Breinlich et al., 2014). Nevertheless, regional interdependence

deserves special attention both from a theoretical and an empirical point of view because

not controlling for existing externalities across regions may produce biased results and,

hence, lead to misleading conclusions (Fingleton and López-Bazo, 2006; Benos et al., 2015).

The �rst representative of these new contributions to the regional development litera-

ture is the work by Gennaioli et al. (2013) who develop a so called `Lucas-Lucas' model.

It consists of a standard migration framework with both talent allocation between en-

trepreneurship and work and within-region human capital externalities. Sanso-Navarro

et al. (2016) introduced technological interdependence à la Ertur and Koch (2007) into

this model, achieving an expression for regional income per capita with spatial e�ects.

This result corroborates the necessity of accounting for the presence of spatial dependence

when studying the determinants of regional development. In doing so, these authors pro-

vide evidence of between-regions human capital externalities. That is to say, a higher stock

of human capital in a region entails not only a higher technological level for that economy

but also additional technological �ows into its neighbors.

Given the homogeneity of the units under scrutiny, the explanatory power of the neo-

classical growth model can be better assessed at the sub-national level. With this aim,

Gennaioli et al. (2014, GLLS hereafter) incorporated a stylized process of limited mobility

of physical and human capital into this theoretical framework, concluding that the speed of

convergence between regions decreases with the intensity of the frictions. Moreover, factor

mobility is expected to increase the in�uence of national income on regional growth. In

order to empirically test for these predictions, a new data set with an extensive coverage

both in the cross-sectional and temporal dimensions was constructed.
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GLLS �nd that there is limited regional convergence because of institutional barriers

to the mobility of resources and raise the puzzle of a slow convergence speed at the sub-

national level. These authors also point out the need to shed more light on the role played

by technological di�usion between regions and productive externalities in this context.

Taking these arguments into account, we try to disentangle the extent to which this puzzling

result regarding the convergence rate is driven by not explicitly controlling for spatial

dependence. Initially, we contribute to the literature that establish theoretical foundations

to the inclusion of this feature in convergence models (Ertur and Koch, 2007; Fischer, 2011;

Pfa�ermayr, 2012). Both this theoretical extension and the structure of the global data

set constructed by GLLS lead us to pose an empirical analysis based on the estimation of

a spatial Durbin panel model.

Due to the considerable amount of missing data at sub-national level, we are imple-

menting a multiple imputation approach (Rubin, 1976, 1987). By proceeding in this way,

we follow Belotti et al. (2017) who suggest using this simulation-based statistical technique

as a way to deal with unbalancedness in spatial panel data. Although multiple imputation

consists of replacing missing information by a number of sets of plausible values, our results

are robust to changes in the model speci�cation, the choice of the spatial weights matrix

and the number of imputations. In a nutshell, we �nd that the estimated regional conver-

gence speed increases when spatial dependence is taken into account. Further, we provide

evidence of a nonlinear relationship between the levels of national income and �nancial

development and the regional rate of convergence.

The rest of the paper is structured as follows. The theoretical framework and the

empirical strategy are laid out in sections 2 and 3, respectively. Section 4 describes the

data and shows some preliminary analysis. Section 5 presents the main results and Section

6 concludes.

2 A neoclassical regional growth model with imperfect factor

mobility

Our point of departure is the theoretical framework of regional convergence and mi-

gration developed by GLLS. This model considers discrete time periods (t = 0,1, ...) and
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a country with a measure one of regions, i ∈ [0,1]. These regions are characterized by

their levels of total factor productivity (TFP) Ai, population Li and initial endowment

of capital per capita ĥi,0. The latter includes both physical and human capital and, for

a given period of time, is di�erent to the amount of capital employed hi,t. Technology is

represented by a Cobb-Douglas production function with diminishing returns where the

inputs are capital and labor. Therefore, output per capita is given by:

yi,t = Aihαi,t (1)

where α is the regional income share remunerating capital, expected to be close to unity as

most labor productivity is determined by capital and skills. Consequently, (1 − α) is the

share of income that rewards labor.

There is no TFP growth and more productive regions display higher levels of Ai. The

competitive remuneration of capital is wi,t = αAihα−1i,t . If there is perfect mobility of capital,

it will shift towards regions with higher wi,t until this remuneration equates across them.

This will imply that:

h̄i,t = Âiht (2)

with Âi =
A

1

1 − α
i

∫ A
1

1 − α
i di

and ht = ∫ ĥi,tdi.

It is considered that, at a given time period, each region invests the same share s of

income in education and in physical capital. Moreover, capital fully depreciates in each

period and there is no population growth. Under these assumptions, the initial endowment

of capital at period t + 1 in region i is:

ĥi,t+1 = sAihαi,t (3)

The relationship between this initial capital endowment and the level of employment will

be determined by migration, which takes place before production and after the generation

of new capital. Only highly skilled workers migrate, making human capital to move across

regions (Gennaioli et al., 2013). On the one hand, each region will employ its capital
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endowment (hi,t+1 = ĥi,t+1) under in�nite mobility costs. On the other hand, and taking

into account expression (2), it will be obtained that hi,t+1 = Âiht+1 under perfect mobility

of capital; where ht+1 = s ∫ Aihαi,tdi denotes the resulting aggregate capital endowment at

t + 1.

Intermediate degrees of mobility will be allowed by assuming that:

hi,t+1 = vt+1 (ĥi,t+1)
τ (Âiht+1)

1−τ
(4)

where τ ∈ [0,1] re�ects mobility costs and

vt+1 =
hτt+1

∫ (ĥi,t+1)
τ (Âi)

1−τ
di

(5)

is a normalization factor.

According to (1), the growth rate of region i between t and t + 1 is given by (hi,t+1
hi,t

)
α

.

Following equations (2) and (3), it is obtained that per capita income growth is determined

by capital employment growth:

hi,t+1
hi,t

= vt+1hατ−1i,t (sAi)τ (Âis∫ Ajh
α
j,tdj)

τ−1
(6)

This expression implies that region i's growth rate increases with the savings rate,

TFP and aggregate investment. In addition, and due to diminishing returns, the initial

level of capital stock reduces growth. Therefore, the economy evolves dependent on the

capital endowment and migration which, in turn, determine the aggregate levels of capital

endowment and output. Diminishing returns make regional income to converge to a unique

steady state with non-zero income and an absence of migration.

After some algebraical manipulations, it is concluded that regional convergence takes

place according to:

ln(yi,t+1
yi,t

) = at+1 + bi − (1 − ατ) ln (yi,t) + α (1 − τ) ln (yt) + εi,t+1 (7)

where

bi = [1 + α (1 − α) (1 − τ)] ln (Ai) (8)
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captures regional productivity, whose transitory shocks are re�ected in the random term

εi,t+1.

Expression (7) re�ects the standard convergence result of neoclassical growth models

that a higher initial level of income per capita reduces subsequent economic growth. Fur-

thermore, and as a new aspect in this theoretical framework, the the speed of convergence

decreases with the intensity of mobility frictions. This model also predicts that factor mo-

bility increases the extent to which income at the country level promotes regional growth.

GLLS point out that OLS estimations of the convergence equation in (7) may be biased

due to an omitted variables problem, as long as not all productivity determinants are

accounted for. Nonetheless, this may not be a serious issue at the regional level because

institutional and cultural factors are similar within countries. It has also been widely

acknowledged in the regional growth and convergence literature that outcomes in a given

region are related to the outcomes and characteristics of its neighbors (Fingleton and López-

Bazo, 2006). This implies that the possible presence of spatial dependence between regions

is another potential source of bias in this context that should be taken into consideration.

3 Empirical strategy

3.1 Spatial Durbin panel model

Spatial dependence has been incorporated into a neoclassical growth framework in Ertur

and Koch (2007) and Fischer (2011) by considering technological spillovers across economies

which, in the end, generate spatial externalities. Using a similar setting, Pfa�ermayr (2012)

highlighted the in�uence of knowledge spillovers on the estimated speed of convergence. In

all these studies, the empirical counterpart of the neoclassical growth model with technolog-

ical interdependence is a spatial Durbin model1 (SDM). The distinghishing characteristic of

this model is that spatial e�ects a�ect both the endogenous and the explanatory variables.

In what follows, we are adopting a static panel SDM version of (7) which, in matrix

form for N regions and a given time period t, can be expressed as:

1This may explain its extensive use to capture spatial dependence in empirical analyses of regional
convergence, see Rey and Le Gallo (2009) and Le Gallo and Fingleton (2014).
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Yt = διN + ρWYt +Xtβ +WXtγ +Ut

Ut = µ +Et, t = 1, . . . , T

(9)

where Yt is the N -dimensional vector for the dependent variable, ιN is a Nx1 vector of

ones and δ is the intercept. W denotes the spatial weights matrix - that determines the

interaction scheme between the regions - and ρ is the spatial autoregressive parameter. Xt

refers to the Nxk matrix of explanatory variables and WXt to its spatial lag. β and γ are

their corresponding k-dimensional parameter vectors. Ut is a Nx1 vector of error terms,

including the time-invariant regional e�ects in µ and the zero-mean i.i.d. innovation terms

in Et.

Depending on the distributional assumption for the disturbance term, the SDM can be

estimated using maximum likelihood (Elhorst, 2003, 2010) or the quasi-maximum likeli-

hood approach (Belotti et al., 2017). In the present paper, we are following this second

alternative (i.e., assuming non-normal errors). For the sake of comparability of our results,

given that the empirical analysis carried out by GLLS includes time-invariant regressors,

expression (9) has been estimated considering the regional e�ects as random2. By pro-

ceeding in this way, it is being assumed that there is no correlation between the regional

e�ects and the explanatory variables and that the regions in the sample are representative

of a larger population.

3.2 Multiple imputation

In spite of the frameworks developed by Pfa�ermayr (2009) and Wang and Lee (2013) to

handle unbalanced spatial panels, there is no general approach to cope with this issue in the

related literature yet. We are implementing the strategy proposed by Belotti et al. (2017)

grounded on the use of multiple imputation (Rubin, 1976, 1987). This simulation-based

statistical technique is one of the most commonly applied methods for dealing with missing

data which, in short, consists of replacing missing values by multiple sets of plausible values.

Rather than �lling in a single value, the distribution of the observed data is used to estimate

multiple values, re�ecting the uncertainty regarding the true value.

2The random e�ects panel data model is usually taken as a point of departure in the spatial econometrics
literature because it (i) provides an intermediate solution to the `all-or-nothing' way of exploting the cross-
sectional dimension of the data, and (ii) avoids losing degrees of freedom when the number of the units in
the panel is large (Elhorst, 2014).
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Imputed values are not intended to represent the `real' values but to reproduce the

variance-covariance structure that would have been observed in the absence of missing

information. In doing so, multiple imputation handles missing data in a way resulting

in valid statistical inference. Although the theoretical foundations of this methodology

were derived under the bayesian paradigm, they are valid from a frequentist point of view.

The bayesian approach is used to create the imputations and underlies the combination

of the estimated parameters. Once an imputation model is selected, M complete data

sets are generated to which the analysis of interest is performed. Finally, the results from

theseM analyses are combined into a single multiple-imputation result. At this estimation

step, coe�cients and standard errors are adjusted for the variability between imputations

following the combination rules proposed by Rubin (1987).

Multiple imputation is preferable to alternative methodologies - like listwise deletion,

pairwise deletion, mean imputation or single imputations - because it only requires that

the missing data mechanism is ignorable. In other words, that it is possible to disregard

the process that causes missing information, assuming that the data is missing at random3

(MAR). This implies that the probability that the information is missing does not depend

on unobserved data, but may depend on observed variables. For this reason, the larger

the number of predictors included in the imputation step the more plausible the MAR

assumption. Under the latter, iterative Markov chain Monte Carlo (MCMC) imputation

methods are used to simulate imputed values from the posterior predictive distribution of

missing data given observed data.

The simulation error will decrease when the number of imputations increases, especially

with high fractions of missing information. In the present paper, simulations have been

carried out running multiple independent chained equations (MICE), which obtain univari-

ate conditional distributions for each variable from a fully conditional speci�cation of the

prediction equations. Even though this technique lacks a rigorous theoretical justi�cation,

its �exibility has made of it a frequently encountered choice in practice. More speci�cally,

3Another possibility is to assume that the data are missing completely at random (MCAR). In this
case, the probability that information is missing does not depend on observed or unobserved variables,
implying that missing values are a random sample of all data values. If the missing data were not at
random (MNAR), the reasons for missingness should be accounted for in the imputation model to obtain
valid results.
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MICE is similar to the Gibbs sampler, a popular MCMC method for simulating data from

complicated multivariate distributions4.

Considering that the complete data Ỹ is a partially observed random sample from

a multivariate distribution P (Ỹ ∣θ), it is assumed that the latter is completely speci�ed

by the unknown vector of parameters θ (van Buuren and Groothuis-Oudshoorn, 2011).

In order to obtain the multivariate distribution of θ, the MICE algorithm samples it-

eratively, on a variable-by-variable basis, from the p univariate conditional distributions

P (Ỹ1∣Ỹ−1, θ−1),. . . ,P (Ỹp∣Ỹ−p, θ−p)5. Variables will be imputed from the most observed to

the least observed. Taking a simple drawn from the observed marginal distributions as the

starting point, the κth iteration is a Gibbs sampler that draws:

θ
∗(κ)
1 ∼ P (θ1∣Ỹ obs

1 , Ỹ κ−1
2 , . . . , Ỹ κ−1

p )

Ỹ
∗(κ)
1 ∼ P (Ỹ1∣Ỹ obs

1 , Ỹ κ−1
2 , . . . , Ỹ κ−1

p , θ
∗(κ)
1 )

⋮

θ∗(κ)p ∼ P (θp∣Ỹ obs
p , Ỹ κ

1 , . . . , Ỹ
κ
p−1)

Ỹ ∗(κ)
p ∼ P (Ỹp∣Ỹ obs

p , Ỹ κ
1 , . . . , Ỹ

κ
p , θ

∗(κ)
p )

(10)

where Ỹ
(κ)
l = (Ỹ obs

l , Ỹ
∗(κ)
l ) denotes the lth imputed variable.

4 Data

4.1 Description

With the aim of empirically testing the predictions of the model presented in Section

2, GLLS constructed a database covering 1,528 regions of 83 countries during the period

1950 − 2010. This data set6 includes information at the sub-national level of GDP per

4See Lee and Carlin (2010) for a comparison of MICE with the iterative multivariate normal (MVN)
method. The latter ensures that imputed values are drawn from a speci�c distribution. Despite MVN may
be more attractive from a theoretical point of view, it may not be suitable to formulate a joint model for
general data structures. That is to say, this technique is appropriate if the multivariate normal distribution
is a reasonable description of the data. Panzera et al. (2016) have recently developed a procedure to deal
with missing information in spatial data that combines bayesian interpolation and multiple imputation.
However, this new method also relies on the assumption that the distribution of the underlying spatial
process is normal.

5θ1,. . . ,θp are speci�c to their corresponding conditional densities and not necessarily the product of a
factorization of P (Ỹ ∣θ).

6Available at https://static-content.springer.com/esm/art%3A10.1007%2Fs10887-014-9105-9/

MediaObjects/10887_2014_9105_MOESM1_ESM.xlsx
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capita (in constant 2005 PPP dollars) and years of schooling for the population aged 15

and older. Regional di�erences in productivity levels are captured using variables related

to geography (area, population density, latitude, average distance to the coast and an in-

dicator of whether the region contains the capital city of the country), natural resource

endowments (cumulative oil and gas production until the year 2000) and the disease en-

vironment (Kiszewski et al., 2004, `malaria index'). The database also includes GDP per

capita at country level. At this point, it is worth noting that we are handling all this

information trying to take advantage of both its cross-sectional and temporal dimensions

(i.e., its panel structure). To do so, the data has been grouped in �ve-year intervals, ruling

out consecutive observations over periods longer than seven years. In addition, regional

real GDP per capita growth rates have been calculated as annual averages according to

their time span.

As noted before, regions should not be considered as independent from a spatial per-

spective in a regional growth and convergence context. The reason is that technological

interdependence generates spatial interactions and spillover e�ects. Therefore, we incorpo-

rate the spatial dimension into the data set constructed by GLLS with a shape�le contain-

ing regional boundaries. This geospatial information has been extracted from the GADM

database of global administrative areas. Furthermore, individual country shape�les were

merged into a single one where the coordinate reference system is latitude/longitude and

the WGS84 datum.

[Insert Table 1 around here]

The main di�culty faced to estimate a spatial panel model with this global sub-national

data set is the presence of missing information, which prevents us from having a balanced

panel. This problem is encountered in both regional and national GDP per capita levels,

population density and years of schooling. Table 1 reports the missing information rates of

these variables in four alternative sample periods. These �gures show that the percentage

of missing data is over 49 per cent during the period 1950−2010, what can be considered a

high rate so as to pose a reliable multiple imputation analysis. Nonetheless, the incidence of

missing data decreases when more recent initial years are taken into account. The highest

percentage of missing observations for the sample period 1980 − 2010 is displayed by the
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years of schooling for the population aged 15 and older (40.7 per cent). These facts lead

us to estimate the spatial Durbin panel model with data starting in 1980.

4.2 Preliminary analysis

This subsection study the extent to which changes in data handling and the sample

period analyzed and the use of the multiple imputation technique alter standard OLS

regression results. With this aim, Table 2 presents cross-sectional estimates of the con-

vergence equation (7) in four alternative samples. The �rst column of results reproduce

those reported by GLLS7, to be compared to the estimated parameters under our proposed

treatment of the data, displayed in the second column. Although the explanatory power

is now slightly higher, the number of observations is smaller and di�erent coe�cients are

obtained.

[Insert Table 2 around here]

The more important disparities are found for national GDP per capita and the indicator

re�ecting if the region includes the capital city, whose estimated parameters are negative

and statistically signi�cant. Despite coe�cients of a similar magnitude are obtained for

latitude, average distance to the coast, the `malaria index' and years of schooling, this is

not the case for oil and gas production and population density. These variables also change

their statistical signi�cance, being now more favorable for population density. Last, but

not least, the parameter for the initial level of regional GDP per capita implies an even

lower convergence speed than that reported by GLLS.

The explanatory power, estimated coe�cients and, as a consequence, implied values for

α and τ are stable across samples. The greatest di�erence is experienced by the variable

that re�ects the regional disease environment, as its corresponding parameter is not only

higher but also statistically signi�cant. In absolute values, the coe�cients for the capital

city indicator and the proxy for human capital are higher in the most recent period. These

�ndings allow us to conclude that restricting the analysis to the years 1980 − 2010 does

not alter the underlying relationship between regional growth and its determinants in this

neoclassical framework.

7Table 5, speci�cation (4); page 282.
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For each sample period analyzed, the last two columns show the estimated parameters

when the multiple imputation technique is implemented, �xing M = 20. The di�erence

between these pairs of set of results relies on whether or not the panel structure underlying

the data has been explicitly taken into account. Together with the growth determinants

not a�ected by the missing information problem, the longitude coordinate of the regional

centroid and country and time dummies have also been considered as explanatory variables

in the imputation step. It can be stated that the use of this method does not modify the

sign nor the statistical signi�cance of the estimated parameters. This is especially the case

when the panel nature of the data is controlled for, but at a cost of a higher sampling

variance due to missing information, as measured by the average relative variance increase

(RVI) and the largest fraction of missing information (FMI).

[Insert Figure 1 around here]

In order to give a visual impression of how the multiple imputation method works in

practice, and for the sample covering the years from 1980 to 2010, Figure 1 plots kernel

estimates of the density function for the regional growth determinants with missing data.

While the black lines correspond to the distributions of the observed data, the grey lines also

include the imputed values. The density functions of both the observed and imputed data

sets are similar for population density, what might explain that the estimated coe�cient

for this variable does not change when the presence of missing information is accounted for.

More interestingly, both national and regional GDP per capita levels and years of education

display higher frequencies in their lower values when imputed values are considered. This is

re�ecting that the unbalancedness of the panel is mainly driven by the missing information

problems su�ered by the regions in countries with lower levels of development.

5 Results

Knowledge spillovers and their productivity e�ects tend to be geographically concen-

trated (Fischer et al., 2009). Following this argument, spatial dependence has been mod-

elled by means of a spatial weights matrix re�ecting geographical proximity. The presence

of a non-trivial number of islands in the data hampers the use of a contiguity matrix.

As an alternative, we are considering a binary matrix that assigns a value of one to the
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�ve nearest neighboring regions, according to their great-circle distances between regional

centroids. This matrix has been row-standardized so that each neighbor receives the same

weight, enhancing our understanding of the estimated coe�cients - because the spatial lags

of the variables are the weighted average of neighboring observations - and allowing us to

obtain comparable parameters across speci�cations.

Table 3 shows the estimation results from a panel SDM version of (7) for the period

1980 − 2010. A random e�ects model has been �tted because, otherwise, time-invariant

growth determinants - latitude, distance to the coast, disease environment, oil and gas

producion and the capital city indicator - would have been dropped from the regression. In

spite of relying on some restrictive assumptions (Elhorst, 2014), the random e�ects model

permits to take the estimates already established both in the literature and in the previous

subsection as a frame of reference. The �rst column of results display the coe�cients from

the speci�cation where spatial e�ects concern all explanatory variables. Taking cross-

sectional regressions as a baseline, the consideration of a panel data model with spatial

dependence makes distance to the coast, the `malaria index' and population density to lose

their relevance in explaining regional growth di�erences worldwide. Nonetheless, estimated

coe�cients for latitude, national income per capita and years of schooling remain almost

unchanged. We also �nd that the spatial lags of these three regressors, as well as that of

the endogenous variable, are statistically signi�cant.

[Insert Table 3 around here]

The result that the growth rate in a region is a�ected by the GDP per capita levels

and growth rates in its neighbors re�ects spatial dependence in regional economic activity.

Further, and in line with recent related studies (Sanso-Navarro et al., 2016), our �ndings

provide evidence that human capital generates spatial spillovers. The estimated coe�-

cients under this �rst speci�cation imply lower values for the regional income share that

remunerates capital and for mobility costs, more easily satisfying the constraints imposed

in the theoretical model. It is worth emphasizing that the parameter that corresponds to

the lag of regional GDP per capita is, in absolute value, more than 3.5 times higher. This

result corroborates our initial suspicion that the low convergence rates found by GLLS
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may be determined by not properly accounting for the presence of spatial dependence in

a neoclassical regional growth context.

The second column of results in Table 3 reports the estimation results when only time-

varying regressors are considered to generate spatial e�ects. Although the regional disease

environment is again signi�cant, latitude and the capital city indicator are not di�erent to

zero from a statistical point of view. Neither the spatial lags nor the speed of convergence

are a�ected by this change in the model speci�cation. The third and fourth columns show

the results obtained when country and time �xed e�ects are, consecutively, also included

as explanatory variables. The changes mainly a�ect latitude and population density - with

negative and statistically signi�cant coe�cients - and the spatial lag of human capital. In

absolute values, the parameters for the spatial lags of regional income per capita levels and

growth rates are now lower. Similarly to related studies (Barro, 2015), the introduction

of country �xed e�ects increases estimated regional convergence rates. As a novelty, this

seems to be also the case of time �xed e�ects when the panel structure of the data is taken

into account.

The interpretation of parameter estimates in spatial regression models is more com-

plicated than in standard OLS regressions due to the feedback e�ects generated by the

dependence relationships in the spatial lag terms. Nevertheless, this is a valuable feature

of spatial models that permits the quanti�cation of spillover e�ects which, in the case of

the SDM, are global. The direct impact of a variation in an explanatory variable in region

i includes the e�ects that this change exerts on its growth rate as well as on that of its

neighbors. This direct impact also re�ects that these e�ects in neighboring regions a�ect

region i. These `own' spillover e�ects are heterogenous in the presence of spatial autocor-

relation because the interaction terms in the spatial weights matrix are di�erent. However,

the magnitude of these feedback e�ects are relatively small compared to the magnitude of

the corresponding parameter for that variable in β. The indirect impact of a change in a

regressor in a given region re�ects the e�ects that this variation has on the growth rate of

its neighbors.

[Insert Table 4 around here]
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Given that the e�ects generated by changes in the regressors will di�er across regions,

LeSage and Pace (2009) propose summarizing the impacts through the average values of

the direct and indirect e�ects from changes in all regions. Table 4 shows the marginal ef-

fects of regional growth determinants obtained from the panel SDM estimation calculated

using this method. These estimates do not depend in a great extent on whether or not it

is considered that all regional growth determinants induce spatial e�ects. In addition, the

sign of the average direct e�ects tends to coincide with that of the estimated parameters8.

The sign and magnitude of the direct impact for the initial level of regional GDP per capita

corroborate that the speed of convergence is higher when spatial e�ects are controlled for.

Although the average direct e�ect for national income is small, its positive sign re�ects that

regional convergence is higher is less developed countries. Years of education is also found

to be a relevant variable to explain regional growth di�erences. Furthermore, the indirect

impact of this proxy for human capital suggests that it generates positive spillovers. This

seems to be also the case of the initial level of regional GDP per capita. That is to say,

regions gain growth bene�ts from being surrounded by richer regions. The disease envi-

ronment and population density also display positive indirect e�ects. Nevertheless, their

statistical signi�cance for population density disappear when spatial e�ects are considered

to be caused only by time-varying variables.

[Insert Table 5 around here]

One criticism of spatial econometric models is that the selection of the weights matrix is

somehow arbitrary. Bearing in mind that there is no clear guidance on how to specify this

matrix, it is a common practice to check whether the estimation results are robust to its

choice. Table 5 reports the results obtained when the binary contiguity matrix re�ects the

three or seven nearest neighbors. The coe�cients present fewer changes when spatial e�ects

are only related to time-varying regressors. In any case, shifts in the estimated parameters

neither a�ect our main variables of interest - national and regional initial income per

capital levels and human capital - nor their spatial lags. It can also be observed that the

coe�cient for the endogenous spatial lag increases with the number of neighbors. On the

contrary, spatial e�ects from population density are statistically signi�cant only when a

8The di�erences between parameter estimates and direct impact estimates represent the feedback e�ects
passing through neighboring regions and back to the origin itself.
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small number of regions is taken into account. Furthermore, an increase in the number of

imputations is expected to reduce the sampling error. Figures displayed in Table 5 show

that generating 50 or 100 imputed data sets do not alter parameter estimates. All these

�ndings lead us to conclude that our results are robust to both the speci�cation of the

spatial weights matrix and the number of imputations.

Richer countries should experience higher regional convergence rates as they have better

capital markets. In this line, GLLS point towards poorly developed �nancial markets as one

of the elements slowing down factor mobility. Following these arguments, Table 6 reports

panel SDM estimates by country groups. The �rst three columns of results distinguish

the countries according to their income levels, using the World Bank classi�cation9 for the

year 1995. Regardless of the income group, the estimated regional speed of convergence

is higher when less heterogeneous subsamples of countries are considered. Although we

�nd that regions in medium and high-income countries present faster convergence rates,

this relationship is non-linear. Actually, our results suggest that there exists an inverted-

U shape relationship between income and the speed of convergence. The endowment of

natural resources exerts a great in�uence on regional growth in low-income countries. On

the contrary, this is the only group where the initial level of GDP per capita in neighboring

regions and years of schooling are not statistically signi�cant. The highest parameter

estimate for the endogenous spatial lag is found in the subsample of the more developed

countries. The latter do not display signi�cant spatial e�ects from human capital.

[Insert Table 6 around here]

Di�erences of the growth and convergence processes across regions in di�erent subsam-

ples can be further analyzed using the index proposed by Svirydzenka (2016). At country

level, this new index of �nancial development10 takes into account its multi-dimensional

nature by combining information on the depth, access and e�ciency of both �nancial

markets and institutions. The last three columns of results in Table 6 show the estimated

coe�cients when countries are classi�ed according to the value of the �nancial development

index in the whole distribution for the year 1995. The theoretical framework adopted in

9Available at http://databank.worldbank.org/data/download/site-content/OGHIST.xls
10Available at http://www.imf.org/~/media/Websites/IMF/imported-datasets/external/pubs/ft/

wp/2016/Data/_wp1605.ashx
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this paper does not have a good �t in the regions whose countries have an index of �nancial

development in the lower quartile. In particular, estimated parameters for the initial level

of regional income and its spatial lag are not signi�cant. Further, the non-linear relation-

ship between the convergence rate and �nancial development is more apparent than that

found when countries are distinguished by income levels.

6 Concluding remarks

This paper incorporates spatial dependence into the neoclassical regional growth frame-

work developed by Gennaioli et al. (2014). The main aim is to study the role played by

technological di�usion between regions and productive externalities. After incorporating

the geographical dimension into their newly constructed database, the empirical analysis is

based on the implementation of multiple imputation techniques to deal with the presence

of missing observations. Our results from a spatial Durbin panel model show that account-

ing for spatial e�ects leads to a higher estimated convergence rate at the sub-national

level. This �nding is robust to changes in the model speci�cation, the choice of the spatial

weights matrix and the number of imputations. We also obtain evidence of an inverted-U

shape relationship between the levels of national income and �nancial development and the

regional speed of convergence. Therefore, not only spatial e�ects but also non-linearities

should be incorporated into the neoclassical regional growth framework with imperfect

factor mobility.
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Tables and �gures

Table 1: Missing observations (%) across alternative sample periods.

1950-2010 1960-2010 1970-2010 1980-2010

L.lngdppc 54.9 48.4 41.2 31.3
L.lngdppcnat 54.9 48.4 41.2 31.3
lnpopdens 49.5 42.9 34.6 26.0
yearsed 59.3 52.6 46.1 40.7
growth 61.9 55.7 48.3 39.1
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Table 3: Determinants of regional growth, 1980-2010. Panel SDM estimation.

(1) (2) (3) (4)

L.lngdppc -0.0348*** -0.0342*** -0.0388*** -0.0550***
(0.0028) (0.0024) (0.0016) (0.0018)

L.lngdppcnat -0.0024** -0.0030*** -0.0050*** -0.0034***
(0.0011) (0.0010) (0.0008) (0.0007)

latitude 0.0005** 0.0000 -0.0003*** -0.0001**
(0.0002) (0.0000) (0.0001) (0.0001)

invdistcoast 0.0148 0.0078 -0.0047 -0.0040
(0.0098) (0.0081) (0.0054) (0.0050)

malaria 0.0003 0.0005*** 0.0005*** 0.0003**
(0.0003) (0.0001) (0.0002) (0.0002)

lnoilgas -0.0316 0.0059 0.0096 -0.0082
(0.0727) (0.0635) (0.0401) (0.0369)

lnpopdens -0.0001 -0.0003 -0.0009*** -0.0006***
(0.0004) (0.0003) (0.0002) (0.0002)

capital -0.0029* -0.0026 -0.0024* -0.0011
(0.0017) (0.0019) (0.0013) (0.0012)

yearsed 0.0028*** 0.0030*** 0.0048*** 0.0030***
(0.0005) (0.0004) (0.0004) (0.0004)

constant 0.0388*** 0.0407*** 0.2743*** 0.4259***
(0.0042) (0.0041) (0.0121) (0.0151)

W*growth 0.7566*** 0.7564*** 0.6218*** 0.5302***
(0.0083) (0.0079) (0.0110) (0.0115)

W*L.lngdppc 0.0303*** 0.0299*** 0.0126*** 0.0081***
(0.0027) (0.0024) (0.0015) (0.0012)

W*L.lngdppcnat 0.0014 0.0016 -0.0041*** -0.0013
(0.0014) (0.0015) (0.0012) (0.0011)

W*latitude -0.0005**
(0.0002)

W*invdistcoast -0.0267
(0.0163)

W*malaria 0.0003
(0.0004)

W*lnoilgas 0.0922
(0.2048)

W*lnpopdens 0.0007 0.0006 -0.0000 -0.0002
(0.0004) (0.0004) (0.0003) (0.0003)

W*capital 0.0005
(0.0040)

W*yearsed -0.0011** -0.0012** 0.0028*** 0.0004
(0.0005) (0.0005) (0.0004) (0.0004)

Observations 9,162 9,162 9,162 9,162
Country FEs No No Yes Yes
Time FEs No No No Yes
Average RVI 0.6376 0.6784 0.7669 0.9212
Largest FMI 0.8138 0.7477 0.7368 0.7265
Implied α 0.9628 0.9628 0.9562 0.9416
Implied τ 1.0025 1.0031 1.0052 1.0036

Note: Robust standard errors are reported in parentheses. Missing
values have been controlled for using 20 multiple imputations. W is
a �ve nearest neighbors row-standardized spatial weights matrix.
*** p<0.01; ** p<0.05; * p<0.10.
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Table 4: Marginal e�ects of regional growth determinants, 1980-2010. Panel SDM estimation.

All variables (1) Time-varying variables (2)

Direct Indirect Total Direct Indirect Total

L.lngdppc -0.0338*** 0.0154*** -0.0184*** -0.0332*** 0.0155*** -0.0177***
(0.0027) (0.0043) (0.0045) (0.0023) (0.0042) (0.0045)

L.lngdppcnat -0.0025** -0.0017 -0.0041 -0.0032*** -0.0027 -0.0059
(0.0011) (0.0040) (0.0043) (0.0010) (0.0042) (0.0044)

latitude 0.0005** -0.0004 0.0001 0.0000 0.0001 0.0001
(0.0002) (0.0003) (0.0001) (0.0000) (0.0001) (0.0001)

invdistcoast 0.0100 -0.0729 -0.0629 0.0090 0.0220 0.0310
(0.0095) (0.0511) (0.0538) (0.0095) (0.0233) (0.0329)

malaria 0.0005 0.0021*** 0.0026*** 0.0006*** 0.0016*** 0.0022***
(0.0003) (0.0006) (0.0006) (0.0002) (0.0004) (0.0006)

lnoilgas -0.0095 0.1601 0.1506 0.0063 0.0151 0.0214
(0.0864) (0.8038) (0.8536) (0.0763) (0.1871) (0.2634)

lnpopdens 0.0000 0.0022** 0.0023* -0.0001 0.0017 0.0016
(0.0004) (0.0011) (0.0012) (0.0003) (0.0011) (0.0012)

capital -0.0034 -0.0069 -0.0104 -0.0032 -0.0077 -0.0109
(0.0022) (0.0154) (0.0170) (0.0022) (0.0055) (0.0077)

yearsed 0.0031*** 0.0040*** 0.0071*** 0.0032*** 0.0039*** 0.0071***
(0.0005) (0.0007) (0.0008) (0.0004) (0.0009) (0.0008)

Note: Standard errors are reported in parentheses. The empirical distribution of these marginal
e�ects have been obtained using the Monte Carlo procedure proposed by LeSage and Pace (2009)
(100 replications). *** p<0.01; ** p<0.05; * p<0.10.
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Table 5: Determinants of regional growth. Panel SDM estimation, robustness check.

All variables (1) Time-varying variables (2)

knn3 knn7 M = 50 M = 100 knn3 knn7 M = 50 M = 100

L.lngdppc -0.0348*** -0.0337*** -0.0346*** -0.0343*** -0.0346*** -0.0334*** -0.0343*** -0.0340***
(0.0025) (0.0025) (0.0030) (0.0027) (0.0025) (0.0025) (0.0030) (0.0028)

L.lngdppcnat -0.0031*** -0.0026*** -0.0028*** -0.0028*** -0.0030*** -0.0026*** -0.0028*** -0.0028***
(0.0010) (0.0009) (0.0009) (0.0010) (0.0010) (0.0009) (0.0009) (0.0010)

latitude 0.0004 0.0004* 0.0005** 0.0005*** 0.0000 0.0000 0.0000 0.0000
(0.0003) (0.0002) (0.0002) (0.0002) (0.0000) (0.0000) (0.0000) (0.0000)

invdistcoast 0.0197** 0.0096 0.0141 0.0147 0.0127 0.0028 0.0062 0.0061
(0.0099) (0.0098) (0.0101) (0.0100) (0.0082) (0.0083) (0.0083) (0.0083)

malaria 0.0007* -0.0004 0.0003 0.0003 0.0006*** 0.0004*** 0.0005*** 0.0005***
(0.0004) (0.0003) (0.0003) (0.0003) (0.0001) (0.0001) (0.0001) (0.0001)

lnoilgas -0.0136 -0.0502 -0.0305 -0.0352 0.0116 0.0011 0.0108 0.0076
(0.0708) (0.0725) (0.0734) (0.0730) (0.0639) (0.0651) (0.0653) (0.0651)

lnpopdens -0.0002 -0.0003 -0.0002 -0.0002 -0.0002 -0.0003 -0.0002 -0.0002
(0.0003) (0.0003) (0.0004) (0.0004) (0.0003) (0.0003) (0.0004) (0.0004)

capital -0.0021 -0.0025 -0.0031 -0.0028 -0.0021 -0.0026 -0.0031 -0.0028
(0.0018) (0.0019) (0.0020) (0.0018) (0.0018) (0.0019) (0.0020) (0.0020)

yearsed 0.0030*** 0.0030*** 0.0030*** 0.0029*** 0.0030*** 0.0030*** 0.0031*** 0.0030***
(0.0005) (0.0004) (0.0004) (0.0004) (0.0005) (0.0004) (0.0004) (0.0004)

constant 0.0504*** 0.0325*** 0.0396*** 0.0391*** 0.0509*** 0.0350*** 0.0409*** 0.0404***
(0.0042) (0.0042) (0.0041) (0.0042) (0.0042) (0.0041) (0.0041) (0.0041)

W*growth 0.6864*** 0.7935*** 0.7562*** 0.7567*** 0.6859*** 0.7931*** 0.7557*** 0.7557***
(0.0087) (0.0075) (0.0082) (0.0082) (0.0087) (0.0075) (0.0082) (0.0080)

W*L.lngdppc 0.0294*** 0.0307*** 0.0302*** 0.0300*** 0.0291*** 0.0300*** 0.0297*** 0.0295***
(0.0024) (0.0026) (0.0029) (0.0028) (0.0023) (0.0026) (0.0029) (0.0027)

W*L.lngdppcnat 0.0015 0.0009 0.0017 0.0015 0.0015 0.0010 0.0017 0.0016
(0.0014) (0.0016) (0.0013) (0.0015) (0.0014) (0.0015) (0.0013) (0.0014)

W*latitude -0.0004 -0.0004* -0.0005*** -0.0005**
(0.0003) (0.0002) (0.0003) (0.0002)

W*invdistcoast -0.0193 -0.0265 -0.0248 -0.0257
(0.0149) (0.0174) (0.0164) (0.0164)

W*malaria -0.0002 0.0009*** 0.0003 0.0003
(0.0004) (0.0004) (0.0003) (0.0003)

W*lnoilgas 0.0603 0.2459 0.0974 0.1123
(0.1671) (0.2556) (0.2107) (0.2098)

W*lnpopdens 0.0008* 0.0007 0.0007 0.0008* 0.0007* 0.0007 0.0006 0.0006
(0.0004) (0.0004) (0.0005) (0.0004) (0.0004) (0.0004) (0.0005) (0.0005)

W*capital 0.0015 0.0026 0.0014 0.0011
(0.0033) (0.0051) (0.0041) (0.0041)

W*yearsed -0.0010* -0.0014*** -0.0013*** -0.0012*** -0.0010** -0.0015*** -0.0014*** -0.0013***
(0.0005) (0.0004) (0.0004) (0.0004) (0.0005) (0.0004) (0.0004) (0.0005)

Observations 9,162 9,162 9,162 9,162 9,162 9,162 9,162 9,162
Average RVI 0.6842 0.5941 0.5487 0.6624 0.7246 0.6380 0.6303 0.6537
Largest FMI 0.7434 0.7309 0.7789 0.7372 0.7435 0.7307 0.7801 0.7562
Implied α 0.9621 0.9637 0.9626 0.9629 0.9624 0.9640 0.9629 0.9632
Implied τ 1.0032 1.0027 1.0029 1.0029 1.0031 1.0027 1.0029 1.0029

Note: Robust standard errors are reported in parentheses. *** p<0.01; ** p<0.05; * p<0.10.
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Table 6: Determinants of regional growth by country groups. Panel SDM estimation.

Income groups (World Bank) Financial development (Svirydzenka, 2016)

Low Medium High Lower quartile Medium Upper quartile

L.lngdppc -0.0535*** -0.0808*** -0.0558*** 0.0062 -0.0891*** -0.0185***
(0.0083) (0.0052) (0.0044) (0.0188) (0.0065) (0.0023)

L.lngdppcnat 0.0032 -0.0019* -0.0014 -0.0003 -0.0003 -0.0004
(0.0022) (0.0011) (0.0011) (0.0067) (0.0013) (0.0009)

latitude 0.0000 0.0012** -0.0000 -0.0002 0.0014** -0.0001
(0.0008) (0.0005) (0.0001) (0.0014) (0.0006) (0.0001)

invdistcoast -0.0029 0.0557** 0.0024 -0.0654 0.0083 0.0024
(0.0302) (0.0223) (0.0047) (0.1178) (0.0248) (0.0039)

malaria -0.0009 -0.0002 -0.0004 0.0004 -0.0002 -0.0003
(0.0006) (0.0006) (0.0023) (0.0008) (0.0007) (0.0002)

lnoilgas 11.3121 -0.1002 0.0276 0.3867 -0.1453 0.0173
(6.9111) (0.1383) (0.0294) (1.0334) (0.1640) (0.0397)

lnpopdens -0.0012 -0.0006 0.0000 0.0003 -0.0001 -0.0000
(0.0009) (0.0005) (0.0004) (0.0030) (0.0006) (0.0003)

capital -0.0104* -0.0031 -0.0004 -0.0022 -0.0055 -0.0011
(0.0056) (0.0034) (0.0011) (0.0099) (0.0039) (0.0010)

yearsed 0.0006 0.0013** 0.0008** 0.0031 0.0018*** 0.0009***
(0.0009) (0.0006) (0.0004) (0.0030) (0.0006) (0.0003)

constant 0.0308** 0.0992*** 0.0466*** 0.0448* 0.0737*** 0.0218***
(0.0133) (0.0128) (0.0064) (0.0254) (0.0126) (0.0032)

W*growth 0.8161*** 0.7777*** 0.9014*** 0.6259*** 0.7499*** 0.8725***
(0.0159) (0.0101) (0.0077) (0.0424) (0.0114) (0.0086)

W*L.lngdppc 0.0467 0.0710*** 0.0527*** -0.0027 0.0785*** 0.0166***
(0.0089) (0.0045) (0.0048) (0.0176) (0.0063) (0.0024)

W*L.lngdppcnat -0.0001 -0.0012 -0.0004 -0.0078 -0.0007 -0.0000
(0.0037) (0.0017) (0.0015) (0.0076) (0.0021) (0.0011)

W*latitude -0.0005 -0.0013** 0.0001 0.0007 -0.0016*** 0.0001
(0.0008) (0.0005) (0.0001) (0.0016) (0.0006) (0.0001)

W*invdistcoast -0.0794 -0.0647* -0.0026 0.1754 -0.0726* 0.0033
(0.0506) (0.0343) (0.0081) (0.1486) (0.0412) (0.0070)

W*malaria 0.0010 0.0004 0.0029 -0.0002 0.0013 0.0004*
(0.0006) (0.0007) (0.0042) (0.0008) (0.0008) (0.0002)

W*lnoilgas -1.8172 -0.4605 0.0400 -1.3164 -0.1191 0.0020
(15.3326) (0.4862) (0.0796) (3.0761) (0.5897) (0.0938)

W*lnpopdens 0.0013 0.0008 -0.0000 -0.0040 0.0009 0.0000
(0.0011) (0.0007) (0.0004) (0.0035) (0.0007) (0.0003)

W*capital -0.0492*** -0.0095 -0.0020 0.0147 0.0038 -0.0024
(0.0117) (0.0071) (0.0025) (0.0175) (0.0085) (0.0024)

W*yearsed 0.0026** 0.0015** -0.0006 -0.0037 0.0030*** -0.0006*
(0.0012) (0.0006) (0.0004) (0.0029) (0.0007) (0.0003)

Observations 1,506 5,436 2,220 702 4,620 3,840
Average RVI 0.7976 0.7670 0.4779 1.9880 0.8097 0.6946
Largest FMI 0.8183 0.7967 0.8008 0.9069 0.8806 0.8994
Implied α 0.9497 0.9173 0.9428 1.0059 0.9106 0.9811
Implied τ 0.9966 1.0021 1.0015 1.0003 1.0003 1.0004

Note: Robust standard errors are reported in parentheses. Missing values have been controlled for using
20 multiple imputations. W is a �ve nearest neighbors row-standardized spatial weights matrix. *** p<0.01;
** p<0.05; * p<0.10.
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Figure 1: Kernel density estimation. Observed (black) and imputed values (light grey, 20
panel imputations) of regional growth determinants with missing information, 1980 − 2010.
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