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Introduction

The weighting matrix issue is an ever-present topic in spatial econometrics, which reflects the great
influence of the time series literature on this field. It is clear the vital importance of attaining a proper
specification of this matrix in order to avoid biases and inconsistencies in applied work. Considering its
importance, it is a bit surprising the treatment, unfocused, arbitrary to high extent, that the literature
has so far given to it. Typically, the researcher provides only one matrix, or a few candidates, very
similar among them, which are hardly questioned. Theoretical justification for the chosen matrix tends
to be rather vague, and the selection or comparison problems are seldom considered. Fortunately,
things have begun to change in recent years where they have appeared several proposal that advocate
for a more data-driven approach. Indeed, it is easy to critizise the traditional mode of working in
relation to W but this is not our purpose. Rather we prefer to try to improve the basis for choosing a
given matrix, from among a finite number of different alternatives; in order to do that, we are going to
look at the performance of several simple criteria already present in the spatial econometrics literature.
Furthermore, we introduce a new non-parametric criterion, based on symbolic entropy, which offers
some advantages to the previous criteria in conditions that deviate somewhat from the standard case.

Roughly, we may distinguish two approaches to the building of W (Harris et al., 2011): (i) specifying
the matrix exogenously; (ii) estimating the matrix from data. The exogenous approach is by far the
most common and includes, for example, use of a binary contiguity criterion, k-nearest neighbours,
kernel functions based on distance, etc. The second approach uses the topology of the space and the
nature of the data, and can take many forms. Most are ad-hoc procedures in which the researcher
selects an objective which guides the search for the best W. Also included is the most recent work
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in which this matrix is directly estimated from the data as, for example, Benjanuvatra and Burridge
(2015). More flexible approaches to W are possible if repeated information in a panel dataset is
available as suggested initially by Meen (1996). Battacharjee and Jensen-Butler (2013) consider a
panel data model with SEM errors, whereas Beenstock and Felsenstein (2012) pose the case of a SLM
model with unobserved random effects. Another strand of the literature follows the approach of Case
(1991), where the weights in the W matrix are endogeneous and changing over time. The recent
contributions of Kelejian and Piras (2014), Qu and Lee (2015) or Kuersteiner and Prucha (2015) are
in this line.

Against this background, our contribution focuses on the specific problem of choosing a matrix
from a finite number of alternatives. It is assumed that the researcher has discussed the case under
study and has defined a set of weighting matrices, which are compatible with the expected interaction
channels in the model. Then there is the problem of selecting the best alternative among them or, in
other words, the necessity of substantiate on objective premises the preference for a particular one.

Comparing Weighting Matrices

There are two main principles that guide our approach to the W issue:

(i) The weighting matrix can be constructed in different ways using different interaction hypothesis.
Each hypothesis results in a different weighting matrix and in different spatial lags, containing
different information. In sum, different weighting matrices means different models.

(ii) There are general guidelines in relation to how a weighting matrix should be built (nearness,
accessibility, influence, etc). However, a priori is difficult to discern which of them is preferable.
This is a topic clearly dominated by uncertainty.

This is a well-known problem in the literature on spatial econometrics where we can find several
criteria. Let us mention some of the more relevant.

First is the J test, inititally adated to this literature by Kelejian (2008) in a SARAR framework,
requiring of GMM estimators. The test can be formulated as a Wald statistic whose asymptotic
distribution, under usual condition, is a Chi-square. Burridge and Fingleton (2010) advocate for
a bootstrap resampling procedure that appears to improve the poor behaviour of the Chi-square
aproximation, in terms both of size and power. Burridge (2012) suggests a mixture between GMM
and likelihood-based moment conditions in order to more effectively control the size of the test whereas
Piras and Lozano (2010) present new evidence on the use of the test that relates its power to a wise
selection of the instruments. Recently Hageman (2012) introduced a variant of the J test, called MJ
(minimum J), that avoids sequential testing and thus the situation of having to conclude that both
specifications explain the data equally well. Moreover, this variant does not require the correct model
(or weight matrix in our case) to be among the considered specifications. On the negative side, we
should mention the necessity to bootstrap the test which complicates its evaluation.

The problem of model selection has also been treated, very successfully, from a Bayesian perspective.
Lesage and Pace (2009) show that the spatial framework fits quite will into a Bayesian approach. The
same as the J-test, the starting point is a finite set of alternative models, M = {M1;M2; . . . ;MR},
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whose specification coincides except for the spatial weighting matrix. Then, the posterior probability
summarizes, for each model, the support that the data offers to the corresponding weight matrix. As
is generally recognized, the Bayesian approach is very powerful to calibrate the suitability of a list of
rival alternatives but is also highly demanding in terms of information needed; moreover, there remain
doubts with respect to the robustness of the procedure under non-standard conditions.

Model selection techniques also have a role in this problem, specially if we do not have a clear
preference for any weighting matrix, which tends to blur the meaning of null hypothesis. There is
a huge literature on model selection for nested and non-nested models, with different purposes and
combining different approaches. In our case, we join the mainstream view in favor of the Akaike
information criterion as a simple and reasonable approximation to the Kullback-Leibler measure.

From a slightly different perspective, Hansen (2007) introduced the concept of model averaging.
The purpose is to produce a linear combination of a finite set of existing models with the purpose
of minimizing the mean square estimation error. The optimal decision, the same as the Bayesian
posterior probability or other selection criteria, is to select the estimator with the lowest risk. This
discussion can be adapted to the case of selecting the most adequate matrix from among a finite set of
alternatives, W = {W1;W2; . . . ;WQ}. The solution is a new matrix, Wn, which minimizes the mean
square error of the estimates. Then the weights of the linear combination of Wn can be used to solve
the selection problem.

Finally, we also introduce a new non-parametric procedure for tackling the problem, based on the
principle that the most adequate matrix should produce more relevant information with respect to the
variables involved in the model. This information measure appears as a reformulation of the traditional
entropy index in terms of what is called symbolic entropy (Matilla and Ruiz, 2008), and it does not
requires prior information from the researcher.

The Monte Carlo Experiment

The comparison between the five approaches to the problem of selecting the most adequate weighting
matrix is made through a comprehensive Monte Carlo experiment, still under process, and whose
design is described below.

For simplicity, in a first step, we are going to use a simple panel equation, containing only one
regressors and its spatial lag in the right hand side, like the following:

yit = f

βxit; θ
N∑

j=1
ωijxjt;µit; εit

 i = 1, ..., N ; t = 1, ..., T. (1)

where β and θ are parameters; εit is the error term of unit i and period t and µit its corresponding
unobserved effects. Each experiment begins by producing a random map in a two-dimensional space
which is reflected in the corresponding W0 matrix, the true weighting matrix. Global parameters of
the DGP are:

• The cross-sectional dimension, from small to large: N ∈ {50, 100, 500}

• The time dimension, reflecting small panels: T ∈ {5, 10, 20}
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• The strength of the relation between y and x, from weak to strong: β ∈ {0.5, 1.0, 2.0}

• The strength of spatial interaction from weak to strong: θ ∈ {0.3, 0.5, 0.8}

• The form of the true weighting matrix which is built using different criteria: (i)- k-neighbors;
(ii)- A continuous distance-decay function, and (iii)- Random assignment of contacts between
the spatial units.

• The list and form of the rival weighting matrices. Four matrices are considered in the list of
possible candidates, two of discrete type and two of a continuous type. The list of candidates
may contain, or not, the true weighting matrix.

• Functional form. Function f in the DGP may be linear o nonlinear but it is assumed that, as
usual, the researcher works under the assumption of linearity in (1)

• Error terms and unobserved effects. Different combinations for both terms will be simulated,
including standard assumptions and increasing departures from them.

• Nature of the relation, which can be static or dynamic.
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